精英家教网 > 高中数学 > 题目详情
17.已知双曲线${x^2}-\frac{y^2}{m}=1$与抛物线y2=8x的一个交点为P,F为抛物线的交点,若|PF|=5,则双曲线的离心率为(  )
A.$\sqrt{2}$B.4C.$\sqrt{3}$D.2

分析 根据题意,设P的坐标为(x0,y0),由|PF|=5结合抛物线的性质分析可得x0=3,代入抛物线的方程可得y0的值,即可得P的坐标,将P的坐标代入双曲线的方程,计算可得m的值,即可得双曲线的标准方程,由双曲线离心率公式计算可得答案.

解答 解:根据题意,双曲线${x^2}-\frac{y^2}{m}=1$与抛物线y2=8x的一个交点为P,设P的坐标为(x0,y0
抛物线的方程为y2=8x,
其准线为x=-2,
若|PF|=5,则P到准线x=-2的距离为5,则x0=3,
则有n2=3×8,解可得y0=±2$\sqrt{6}$,
即P(3,±2$\sqrt{6}$),
又由P在双曲线上,则有9-$\frac{24}{m}$=1,解可得m=3,
则双曲线的方程为:x2-$\frac{{y}^{2}}{3}$=1,
其中a=1,b=$\sqrt{3}$,则c=$\sqrt{1+3}$=2,
其离心率e=$\frac{c}{a}$=2;
故选:D.

点评 本题考查抛物线、双曲线的几何性质,关键是求出P的坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知点M是圆心为E的圆${(x+\sqrt{3})^2}+{y^2}=16$上的动点,点$F(\sqrt{3},0)$,O为坐标原点,线段MF的垂直平分线交EM于点P.
(1)求动点P的轨迹H的方程;
(2)过原点O作直线l交(1)中的轨迹H于点A,B,点C在轨迹H上,且|AC|=|CB|,点D满足$\overrightarrow{CD}=\overrightarrow{CA}+\overrightarrow{CB}$,试求四边形ACBD的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x2-2ax+1对任意x∈(0,2]恒有f(x)≥0成立,则实数a的取值范围是(  )
A.$[{1,\frac{5}{4}}]$B.[-1,1]C.(-∞,1]D.$({-∞,\frac{5}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙、丙三人玩抽红包游戏,现将装有5元、3元、2元的红包各3个,放入一不透明的暗箱中并搅拌均匀,供3人随机抽取.
(Ⅰ)若甲随机从中抽取3个红包,求甲抽到的3个红包中装有的金额总数小于10元的概率.
(Ⅱ)若甲、乙、丙按下列规则抽取:
①每人每次只抽取一个红包,抽取后不放回;
②甲第一个抽取,甲抽完后乙再抽取,丙抽完后甲再抽取…,依次轮流;
③一旦有人抽到装有5元的红包,游戏立即结束.
求甲抽到的红包的个数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{4}{3}$x3-ax,在x=$\frac{1}{2}$处取得极小值,记g(x)=$\frac{1}{f′(x)}$,程序框图如图所示,若输出的结果S>$\frac{12}{25}$,则判断框中可以填入的关于n的判断条件是(  )
A.n≤12?B.n>12?C.n≤13?D.n>13?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=1+sin2x得最小正周期是π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某城市为配合国家“一带一路”战略,发展城市旅游经济,拟在景观河道的两侧,沿河岸直线l1与l2修建景观(桥),如图所示,河道为东西方向,现要在矩形区域ABCD内沿直线将l1与l2接通.
已知AB=60m,BC=80m,河道两侧的景观道路修复费用为每米1万元,架设在河道上方的景观桥EF部分的修建费用为每米2万元.

(1)若景观桥长120m时,求桥与河道所成角的大小;
(2)如何设计景观桥EF的位置,使矩形区域ABCD内的总修建费用最低?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直角梯形ABCP中,$CP∥AB,CP⊥CB,AV=BC=\frac{1}{2}CP=2$,D是CP的中点,将△PAD沿AD折起,使得PD⊥平面ABCD.

(Ⅰ)求证:平面PAD⊥平面ABCD
(Ⅱ)若E在CP上且二面角E-BD-C所成的角的余弦值为$\frac{{\sqrt{3}}}{3}$,求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$sinαsin(α+\frac{π}{2})=\frac{{\sqrt{2}}}{3}$,则cos2α=$±\frac{1}{3}$.

查看答案和解析>>

同步练习册答案