精英家教网 > 高中数学 > 题目详情
17.函数f(x)=x3+2ax2+x在(0,+∞)有两个极值点,则实数a的取值范围是(  )
A.(0,+∞)B.(-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)C.(-$∞,-\frac{\sqrt{3}}{2}$)D.(-∞,0)

分析 求导函数,将函数f(x)=x3+2ax2+x在(0,+∞)有两个极值点,转化为方程3x2+4ax+1=0在(0,+∞)上有两个不等的根,即可求得实数a的取值范围

解答 解:求导函数,可得f′(x)=3x2+4ax+1
∵函数f(x)=x3+2ax2+x在(0,+∞)有两个极值点,
∴方程3x2+4ax+1=0在(0,+∞)上有两个不等的根
∴$\left\{\begin{array}{l}{16{a}^{2}-12>0}\\{-\frac{4a}{3}>0}\end{array}\right.$
∴a<-$\frac{\sqrt{3}}{2}$
故选:C.

点评 本题考查导数知识的运用,解题的关键是将函数f(x)=x3+2ax2+x在(0,+∞)有两个极值点,转化为方程3x2+4ax+1=0在(0,+∞)上有两个不等的根.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设数列{an}满足3a1+32a2+…+3nan=$\frac{{n}^{2}+pn}{2}$(n∈N*,p∈R)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,若对于任意的n∈N*,都有Sn<$\frac{5}{4}$成立,求证实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求证:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)求点C到平面A1BC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆的两焦点为F1(-1,0)、F2(1,0),P为椭圆上一点,P到F1的距离的最大值为3.
(1)求椭圆的方程;
(2)过点F1的直线交椭圆与A、B两点,求当三角形ABF2的面积最大时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图在Rt△ABC中,∠ACB=90°,∠B=30°,D、E分别为ABCD的中点,AE的延长线交CB于点F.现将△ACD沿CD折起,折成二面角A-CD-B,连接AF.
(1)求证:平面AEF⊥平面CBD;
(2)当二面角A-CD-B为直二面角时,求直线AB与平面AEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱柱BCG-ADE中,四边形ABCD为正方形,AE⊥平面CDE,AE=DE=2,FD=EF.
(Ⅰ)求证:BE∥平面ACF;
(Ⅱ)求二面角B-CF-A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四面体ABCD的各棱长均为a,E、F分别是AB、CD的中点.
(1)证明:线段EF是异面直线AB与CD的公垂线段;
(2)求异面直线AB与CD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为(  )
A.56B.54C.53D.52

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解答下列问题:
(1)已知sinθ•cosθ=$\frac{1}{8}$,且θ∈($\frac{π}{4}$,$\frac{π}{2}$),求cosθ-sinθ的值.
(2)求sin$\frac{29π}{6}$+cos(-$\frac{29π}{3}$)+tan(-$\frac{25π}{4}$)的值.

查看答案和解析>>

同步练习册答案