精英家教网 > 高中数学 > 题目详情
12.如图在Rt△ABC中,∠ACB=90°,∠B=30°,D、E分别为ABCD的中点,AE的延长线交CB于点F.现将△ACD沿CD折起,折成二面角A-CD-B,连接AF.
(1)求证:平面AEF⊥平面CBD;
(2)当二面角A-CD-B为直二面角时,求直线AB与平面AEF所成角的正弦值.

分析 (1)通过折起后AE⊥CD、EF⊥CD,及面面垂直的判定定理即得结论;
(2)过B作EF的延长线的垂线交EF于O点,连结OA,则∠BAO就是直线AB与平面AEF所成的角.通过余弦定理及勾股定理可得AB=$\frac{\sqrt{10}}{2}$a,在Rt△ABO中利用sin∠BAO=$\frac{BO}{AB}$计算即可.

解答 (1)证明:∵在Rt△ABC中,D为AB的中点,∠CAD=60°,∴AD=CD=DB,
又E是CD的中点,得AE⊥CD,折起后,AE⊥CD,EF⊥CD,
又AE∩EF=E,AE?平面AEF,EF?平面AEF,∴CD⊥平面AEF,
又CD?平面CDB,∴平面AEF⊥平面CBD;
(2)解:由(1)知CD⊥平面AEF,
过B作EF的延长线的垂线交EF于O点,连结OA,
∴OB∥CD,∴OB⊥平面AEF,
∴∠BAO就是直线AB与平面AEF所成的角.
设AC=a,在△CDB中,∠DCB=30°,CE=$\frac{a}{2}$,CB=$\sqrt{3}$a,
∴EB2=CE2+CB2-2CE•CB•cos∠DCB=$\frac{7{a}^{2}}{4}$,
又AE=$\frac{\sqrt{3}}{2}$a,∴AB=$\sqrt{\frac{7{a}^{2}}{4}+\frac{3{a}^{2}}{4}}$=$\frac{\sqrt{10}}{2}$a,
又CF=$\frac{\frac{a}{2}}{cos30°}$=$\frac{\sqrt{3}}{3}$a,∴BF=$\sqrt{3}$a-$\frac{\sqrt{3}}{3}$a=$\frac{2\sqrt{3}}{3}$a,
∴BO=$\frac{2\sqrt{3}}{3}$asin60°=a,
∴sin∠BAO=$\frac{BO}{AB}$=$\frac{\sqrt{10}}{5}$,
∴直线AB与平面AEF所成角的正弦值为$\frac{\sqrt{10}}{5}$.

点评 本题考查空间中面面垂直的判定,以及求二面角的三角函数值,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)设AB=2,若H为PD上的动点,EH与平面PAD所成最大角的正切值为$\frac{\sqrt{6}}{2}$,
①求异面直线PB与AD所成角的正弦值;
②求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,点F在PA上,且2PF=FA.
(1)求证:BE⊥平面PAC;
(2)求点E到平面PBF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的四个顶点所构成的菱形的边长是$\sqrt{5}$,面积是4,圆R:(x-4)2+y2=r2(6>r>2)与椭圆C交于点M与点N,连接RM并延长交椭圆于点P.
(1)求椭圆C的方程;
(2)设椭圆的右顶点为A,当$\overrightarrow{AM}•\overrightarrow{AN}$取最小值时,求r的值;
(3)试问,当r变化时,直线NP是否与x轴交于一个定点?若是,求出该定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.平行六面体ABCD-A1B1C1D1中,∠A1AD=∠A1AB=60°,DAB=90°,A1A=3,AB=2,AD=1,则其对角线AC1的长为$\sqrt{23}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=x3+2ax2+x在(0,+∞)有两个极值点,则实数a的取值范围是(  )
A.(0,+∞)B.(-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)C.(-$∞,-\frac{\sqrt{3}}{2}$)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(1)若f(0)=0时,求函数f(x)的解析式.
(2)若对于任意的x∈[0,3],都有f(x)≥c2成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=f(x),x∈N,如果存在一个函数y=g(x),x∈N,且满足f(n)=g(n+1)-g(n),n∈N,那么有:f(1)+f(2)+…+f(n)=g(n+1)-g(1).
(1)当f(n)=$\frac{1}{n(n+1)}$时,请给出相应的g(n),并求f(1)+f(2)+…+f(100)的值;
(2)当f(n)=2n时,请给出相应的g(n),并求f(1)+f(2)+…+f(100)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知⊙M与⊙N的极坐标方程分别为ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(1)求⊙M与⊙N的圆心的极坐标;
(2)若⊙M、⊙N的交点为A,B,求直线AB的极坐标方程.

查看答案和解析>>

同步练习册答案