精英家教网 > 高中数学 > 题目详情
4.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(1)若f(0)=0时,求函数f(x)的解析式.
(2)若对于任意的x∈[0,3],都有f(x)≥c2成立,求c的取值范围.

分析 (1)求出导数,由题意可得f′(1)=0,f′(2)=0,解方程可得a,b,又c=0,即可得到f(x)的解析式;
(2)求出导数,求得单调区间,可得f(x)的极值,求得端点的函数值,即可得到区间[0,3]上的最大值,可得c的不等式,解得即可得到c的范围.

解答 解:(1)f′(x)=6x2+6ax+3b,
因为函数f(x)在x=1及x=2取得极值,则有f′(1)=0,f′(2)=0,
所以$\left\{\begin{array}{l}{6+6a+3b=0}\\{24+12a+3b=0}\end{array}\right.$,
解得a=-3,b=4.        
又因为f(0)=0,所以c=0,
所以f(x)=2x3-9x2+12x;                           
(2)由(1)可知,f(x)=2x3-9x2+12x+8c,
f′(x)=6x2-18x+12=6(x-1)(x-2).
当x∈(0,1)时,f′(x)>0;当x∈(1,2)时,f′(x)<0;当x∈(2,3)时,f′(x)>0.
所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c
则当x∈[0,3]时,f(x)的最小值为f(0)=8c.           
因为对于任意的x∈[0,3],有f(x)≥c2恒成立,所以8c≥c2,解得0≤c≤8,
因此c的取值范围为[0,8].

点评 本题考查导数的运用:求单调区间和极值、最值,同时考查不等式恒成立问题转化为求函数的最值问题,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数g(x)=lnx-(x+1)
(1)求函数g(x)的极大值;
(2)求证:ln($\frac{n+1}{n}$)<$\frac{1}{n}$(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=x3+3ax2-9x+5,若f(x)在x=1处有极值
(1)求实数a的值
(2)求函数f(x)的极值
(3)若对任意的x∈[-4,4],都有f(x)<c2,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图在Rt△ABC中,∠ACB=90°,∠B=30°,D、E分别为ABCD的中点,AE的延长线交CB于点F.现将△ACD沿CD折起,折成二面角A-CD-B,连接AF.
(1)求证:平面AEF⊥平面CBD;
(2)当二面角A-CD-B为直二面角时,求直线AB与平面AEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下图是导函数y=f′(x)的图象,则函数y=f(x)的极小值点为(  )
A.a,x3,x6B.x2C.x3,x6D.x4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四面体ABCD的各棱长均为a,E、F分别是AB、CD的中点.
(1)证明:线段EF是异面直线AB与CD的公垂线段;
(2)求异面直线AB与CD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知1<a<2,f(x)=loga(x+$\sqrt{x{\;}^{2}-1}$)(x>1),
(1)求函数f(x)的反函数f-1(x)和这个反函数的定义域D;
(2)设x∈D,g(x)=$\frac{{2}^{x}+2{\;}^{-x}}{2}$,比较f-1(x)与g(x)的大小;
(3)设bn=f-1(n),求证:对任意正整数n,都有b1+b2+b3+…+b2n<4n-($\frac{1}{2}$)n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数字1,2,3,4,5,6,7,8,9.
(1)能组成多少个数字不重复的四位偶数?
(2)能组成杜少个百位数字大于十位数字且十位数字大于个位数字的三位数?
(3)如果把这9个数字平均分成三组,求三组都成等差数列的有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知D(X)=4,D(Y)=1,ρXY=0.6,求D(X+Y),D(3X-2Y)

查看答案和解析>>

同步练习册答案