【题目】将正整数1,2,3,
,n,
排成数表如表所示,即第一行3个数,第二行6个数,且后一行比前一行多3个数,若第i行,第j列的数可用
表示,则100可表示为______.
第1列 | 第2列 | 第3列 | 第4列 | 第5列 | 第6列 | 第7列 | 第8列 |
| |
第1行 | 1 | 2 | 3 | ||||||
第2行 | 9 | 8 | 7 | 6 | 5 | 4 | |||
第3行 | 10/p> | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|
|
科目:高中数学 来源: 题型:
【题目】已知在直角坐标系xOy中,圆C的参数方程为
为参数
,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
.
1
求圆C的普通方程和直线l的直角坐标方程;
2
设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的方程为
,曲线
:
(
为参数,
),在以原点
为极点,
轴正半轴为极轴的极坐标系中,曲线
:
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)若直线
与曲线
有公共点,且直线
与曲线
的交点
恰好在曲线
与
轴围成的区域(不含边界)内,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生将语文、数学、英语、物理、化学、生物6科的作业安排在周六、周日完成,要求每天至少完成两科,且数学,物理作业不在同一天完成,则完成作业的不同顺序种数为( )
A. 600B. 812C. 1200D. 1632
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以
为极点,
轴正半轴为极轴建立极坐标系.已知曲线
的参数方程为
(
为参数),
,
为过点
的两条直线,
交
于
,
两点,
交
于
,
两点,且
的倾斜角为
,
.
(1)求
和
的极坐标方程;
(2)当
时,求点
到
,
,
,
四点的距离之和的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆
的左焦点为
,右顶点为
,上顶点为
.
(1)已知椭圆的离心率为
,线段
中点的横坐标为
,求椭圆的标准方程;
(2)已知△
外接圆的圆心在直线
上,求椭圆的离心率
的值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了更好地服务民众,某共享单车公司通过
向共享单车用户随机派送每张面额为0元,1元,2元的三种骑行券.用户每次使用
扫码用车后,都可获得一张骑行券.用户骑行一次获得1元奖券、获得2元奖券的概率分别是0.5、0.2,且各次获取骑行券的结果相互独立.
(I)求用户骑行一次获得0元奖券的概率;
(II)若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为
,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“五一”期间,为了满足广大人民的消费需求,某共享单车公司欲投放一批共享单车,单车总数不超过100辆,现有A,B两种型号的单车:其中A型车为运动型,成本为400元
辆,骑行半小时需花费
元;B型车为轻便型,成本为2400元
辆,骑行半小时需花费1元
若公司投入成本资金不能超过8万元,且投入的车辆平均每车每天会被骑行2次,每次不超过半小时
不足半小时按半小时计算
,问公司如何投放两种型号的单车才能使每天获得的总收入最多,最多为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com