精英家教网 > 高中数学 > 题目详情
5.求形如函数y=f(x)g(x)(f(x)>0)的导数的方法可以为:先两边同取自然对数lny=g(x)lnf(x),再两边同时求导得到$\frac{1}{y}•{y^'}={g^'}(x)lnf(x)+g(x)•\frac{1}{f(x)}•{f^'}(x)$,于是得到y′,试用此法求的函数$y={x^{x^2}}$(x>0)的一个单调递增区间是(  )
A.(e,4)B.$(\frac{1}{{\sqrt{e}}},+∞)$C.(0,e)D.$(0,\frac{1}{{\sqrt{e}}})$

分析 根据定义,先求原函数的导数,令导数大于0,解不等式即可.

解答 解:由题意得:
y′=f(x)g(x)[g′(x)lnf(x)+g(x)•$\frac{1}{f(x)}$•f′(x)]
=${x}^{{x}^{2}}$(2xlnx+x2•$\frac{1}{x}$)
=${x}^{{x}^{2}}$(2xlnx+x),
令y′>0,解得:x>$\frac{1}{\sqrt{e}}$,
故选:B.

点评 本题考查函数的单调性,要求首先读懂定义,并熟练掌握导数运算,同时要注意函数的定义域.属简单题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知坐标平面上三点A(6,0),B(0,2$\sqrt{3}$),C(cosα,sinα),α∈[0,2π)
(1)求△ABC面积的表达式,并化简成一个角的一个三角函数形式;
(参考公式:△ABC中,若$\overrightarrow{CA}$=(x1,y1),$\overrightarrow{CB}$(x2,y2),则S△ABC=$\frac{1}{2}$|x1y2-x2y1|)
(2)若($\overrightarrow{OA}+\overrightarrow{OC}$)2=43,(O为坐标原点),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x,y满足约束条件$\left\{{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\ \begin{array}{l}x≥0\\ y≥0\end{array}\end{array}}\right.$,则$z=\frac{2^x}{{\sqrt{2^y}}}$的最小值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.1D.${2^{-\frac{3}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$f(\sqrt{x})=x$,则函数f(x+2)为(  )
A.y=x2+4x+4(x≥-2)B.y=x2-4x+4(x≥0)C.y=x2+2(x≥0)D.y=x2-2(x≥0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设向量$\overrightarrow a=(2,1+m),\overrightarrow b=(3,m)$,且$\overrightarrow a∥\overrightarrow b$,则m=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知各项均为正数的等差数列{an},且a1+a7=20,a1•a7=64.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{2×{4}^{n}}$,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sinωx+3sin(ωx+$\frac{π}{2}$)(ω>0)的最小正周期为π,则ω的值(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=[2sin(x+$\frac{π}{3}$)+sinx]cosx-$\sqrt{3}$sin2x.
(1)求f(x)的最小正周期
(2)若存在x0∈[0,$\frac{5π}{12}$]使mf(x0)-2=0成立,求实数m的取值范围.
(3)△ABC为锐角三角形,且∠B=2∠A,求$\frac{f(\frac{C}{2}-\frac{π}{6})}{f(\frac{B}{2}-\frac{π}{6})}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知曲线C上任意一点到点F(1,0)的距离比到直线x+2=0的距离小1,点P(4,0).
(Ⅰ)求曲线C的方程;
(Ⅱ)设Q是曲线C上的动点,求|PQ|的最小值;
(Ⅲ)过点P的直线l与曲线C交于M、N两点,若△FMN的面积为6$\sqrt{5}$,求直线l的方程.

查看答案和解析>>

同步练习册答案