精英家教网 > 高中数学 > 题目详情
16.已知x,y满足约束条件$\left\{{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\ \begin{array}{l}x≥0\\ y≥0\end{array}\end{array}}\right.$,则$z=\frac{2^x}{{\sqrt{2^y}}}$的最小值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.1D.${2^{-\frac{3}{2}}}$

分析 作出不等式组对应的平面区域.化简目标函数,利用函数的几何意义,求解即可.

解答 解:$z={2^{x-\frac{y}{2}}}$,设$m=x-\frac{y}{2}$,要使z最小,则只需求m的最小值即可.
作出不等式组$\left\{{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\ \begin{array}{l}x≥0\\ y≥0\end{array}\end{array}}\right.$对应的平面区域.由$m=x-\frac{y}{2}$得y=2x-2m,
平移直线,由平移可知当直线y=2x-2m经过点(0,3)时,
直线y=2x-2m的截距最大,此时m最小,
∴$z={2^{x-\frac{y}{2}}}$的最小值为${2^{-\frac{3}{2}}}$,
故选:D.

点评 本题考查线性规划的应用,转化目标函数为线性关系是解题的关键之一,考查数形结合思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设方程10x=|lg(-x)|的两个根分别为x1,x2,则(  )
A.x1 x2<0B.x1 x2=1C.x1x2>1D.0<x1 x2<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z满足$\frac{1-2i}{z}=i$,则z的共轭复数的虚部为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$f(x)=\left\{\begin{array}{l}1-{x^2},\;x≤1\\ mlnx,\;x>1\end{array}\right.$,若函数y=f(x)-x恰有三个零点,则f(m)=e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示的程序框图运行的结果是(  )
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2014}{2013}$D.$\frac{2015}{2014}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)在(0,+∞)内可导,且$f({e^x})=3x+\frac{1}{2}{e^x}+1$,且f′(1)=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<|φ|<π)在一个周期内的图象如图所示.
(1)求函数f(x)的解析式;
(2)求f(x)在[0,π]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.求形如函数y=f(x)g(x)(f(x)>0)的导数的方法可以为:先两边同取自然对数lny=g(x)lnf(x),再两边同时求导得到$\frac{1}{y}•{y^'}={g^'}(x)lnf(x)+g(x)•\frac{1}{f(x)}•{f^'}(x)$,于是得到y′,试用此法求的函数$y={x^{x^2}}$(x>0)的一个单调递增区间是(  )
A.(e,4)B.$(\frac{1}{{\sqrt{e}}},+∞)$C.(0,e)D.$(0,\frac{1}{{\sqrt{e}}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C处.小船沿BC行驶一段时间后,船到达海岛的正西方向的D处,此时船距岛A有$\frac{{9+\sqrt{3}}}{13}$千米.

查看答案和解析>>

同步练习册答案