精英家教网 > 高中数学 > 题目详情
1.设函数f(x)在(0,+∞)内可导,且$f({e^x})=3x+\frac{1}{2}{e^x}+1$,且f′(1)=$\frac{7}{2}$.

分析 运用换元法,求得f(t)=3lnt+$\frac{1}{2}$t+1,求出导数,代入t=1计算即可得到所求值.

解答 解:$f({e^x})=3x+\frac{1}{2}{e^x}+1$,
可令t=ex,则x=lnt,
f(t)=3lnt+$\frac{1}{2}$t+1,
导数f′(t)=$\frac{3}{t}$+$\frac{1}{2}$,
则f′(1)=3+$\frac{1}{2}$=$\frac{7}{2}$.
故答案为:$\frac{7}{2}$.

点评 本题考查导数的概念和运用,考查运算能力,正确求得导数是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列结论中,表述正确的是(  )
A.∅∈NB.{2}∈NC.$\sqrt{2}$∈ND.{$\sqrt{2}$}⊆N

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,c=4且$\sqrt{3}a=2csinA$,则△ABC面积的最大值为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数),曲线C2的直角坐标方程为x2+(y-1)2=1,以O为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求C1和C2的极坐标方程;
(Ⅱ)已知射线l1:θ=α(0<α<$\frac{π}{2}$),将l1逆时针旋转$\frac{π}{6}$得到l2:θ=α+$\frac{π}{6}$,且l1与C1交于O,P两点,l2与C2交于O,Q两点,求|OP|•|OQ|取最大值时点P的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x,y满足约束条件$\left\{{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\ \begin{array}{l}x≥0\\ y≥0\end{array}\end{array}}\right.$,则$z=\frac{2^x}{{\sqrt{2^y}}}$的最小值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.1D.${2^{-\frac{3}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题错误的是(  )
A.若α,β垂直于同一平面,则α与β可能相交
B.若m,n平行于同一平面,则m与n可能异面
C.若m,n不平行,则m与n不可能垂直于同一平面
D.若α,β不平行,则在α内不存在与β平行的直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$f(\sqrt{x})=x$,则函数f(x+2)为(  )
A.y=x2+4x+4(x≥-2)B.y=x2-4x+4(x≥0)C.y=x2+2(x≥0)D.y=x2-2(x≥0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知各项均为正数的等差数列{an},且a1+a7=20,a1•a7=64.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{2×{4}^{n}}$,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=ln(1+2x),g(x)=ln(1-2x),则f(x)+g(x)为(  )
A.奇函数B.偶函数
C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数

查看答案和解析>>

同步练习册答案