精英家教网 > 高中数学 > 题目详情
棱长是1的正方体,P、Q分别是棱AB、CC1的中点,
(1)求证:A1P⊥平面AQD;
(2)求直线PQ与平面AQD所成角的正弦值.
考点:直线与平面所成的角,直线与平面垂直的判定
专题:综合题,空间位置关系与距离,空间角
分析:(1)要证A1P⊥平面AQD,只需要证明A1P⊥AD,AR⊥A1P,利用三角形的全等可得AR⊥A1P,从而得证.
(2)求直线PQ与平面AQD所成角的正弦值,关键是寻找斜线PQ在平面内的射影,由(1)易得A1P与AR交于点S,连接SQ,则∠PQS即为PQ与平面AQD所成角,从而可解.
解答: (1)证明:平面AQD与侧棱B1B的交点是R,则R是B1B的中点.
在正方形ABB1A1中,P是棱AB的中点,可得△A1AP≌△ABR,
所以AR⊥A1P,
又AD⊥平面ABB1A1,A1P?平面ABB1A1,得A1P⊥AD,AD∩AR=A,
所以A1P⊥平面AQD
(2)解:设A1P与AR交于点S,连接SQ,则∠PQS=θ即为PQ与平面AQD所成角.
在Rt△PQS中,|PS|=
4
3
13
,|PQ|=
14
3
,∴sinθ=
|PS|
|PQ|
=
2
182
91

即直线PQ与平面AQD所成角的正弦值是
2
182
91
点评:本题的考点是直线与平面所成的角,主要考查线面垂直,考查线面角,关键是利用线面垂直的定义,寻找斜线在平面内的射影.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:
(1)(x2-
2
x+
1
3
2
(2)(x2+3xm)(9x2m-3xm+2+x4
(3)(a+b)[(a-b)2+ab]-(a-b)[(a+b)2-ab].

查看答案和解析>>

科目:高中数学 来源: 题型:

从5名男生和3名女生中任选3人参加奥运会火炬接力活动,若随机变量ξ表示所选3人中女生的个数,求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax,(x≥0)
(1-2a)x-4a+4,(x<0)
,其中a>0且a≠1.
(1)若f(f(-2))=
1
9
,求a的值;
(2)若f(x)在R上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC中,PA⊥平面ABC,∠ACB=90°,BC=1,AC=
2
.如图,从由任何二个顶点确定的向量中任取两个向量,记变量X为所取两个向量的数量积的绝对值.
(1)当PA=2时,求P(X=4)的值.
(2)当PA=1时,求变量X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2-
x+3
x+1
的定义域为A,B={x|(x-2a)(x-a-1)<0}.
(1)求集合A;
(2)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两个围棋队各派出三名选手A、B、C和a、b、c并按A、B、C和a、b、c的出场顺序进行擂台赛(擂台赛规则是:败者被打下擂台,胜者留在台上与对方下一位进行比赛,直到一方选手全部被打下擂台比赛结束),已知A胜a的概率为
3
5
,而B、C和a、b、c五名选手的实力相当,假设各盘比赛结果相互独立.
(Ⅰ)求到比赛结束时共比赛三盘的概率;
(Ⅱ)求到比赛结束时选手A胜二盘的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校有男学生1200人,女生1000人,用分层抽样的方法从全体学生中抽取一个容量为n的样本,若女生抽取80人,则n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

6位同学参加百米短跑初赛,赛场共有6条跑道,已知甲同学排在第一跑道,则乙同学在第二跑道的概率为
 

查看答案和解析>>

同步练习册答案