精英家教网 > 高中数学 > 题目详情
4.已知a,b,c∈R+,a+b+c=1,求证:
(1)$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$≤$\sqrt{3}$
(2)ab+bc+ca≤$\frac{1}{3}$.

分析 (1)由柯西不等式可得:($\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$)2≤(a+b+c)(1+1+1),代入条件,即可证明结论;
(2)利用综合法,由a+b+c=1⇒a2+b2+c2+2ab+2bc+2ac,利用重要不等式a2+b2≥2ab,a2+c2≥2ac,b2+c2≥2bc,易证a2+b2+c2≥ab+bc+ac,与前者联立可证得结论.

解答 证明:(1)由柯西不等式可得:($\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$)2≤(a+b+c)(1+1+1),
∵a+b+c=1,
∴($\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$)2≤3,
∴$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$≤$\sqrt{3}$;
(2)∵a+b+c=1,
∴a2+b2+c2+2ab+2bc+2ac,
又a2+b2≥2ab,a2+c2≥2ac,b2+c2≥2bc,
将以上三个不等式相加得:2(a2+b2+c2)≥(2ab+2bc+2ac),
即a2+b2+c2≥ab+bc+ac,
∴1=a2+b2+c2+2ab+2bc+2ac≥ab+bc+ac+2ab+2bc+2ac=3(ab+bc+ac),
∴ab+bc+ca≤$\frac{1}{3}$.

点评 本题考查不等式的证明,着重考查综合法的运用,考查推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知复数$z=\frac{2i}{1-i}$,若|z|2+az+b=1-i.
(Ⅰ)求$\overline z$;
(Ⅱ)求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知tanα=2,则sin2α的值为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知i是虚数单位,则i2015=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=ax-lnx,x∈(0,e],其中e是自然对数的底数,a∈R.
(1)当a=1时,求函数f(x)的极值;
(2)是否存在实数a使函数f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由;
(3)在(1)的条件下,证明不等式f(x)>$\frac{lnx}{x}$+$\frac{1}{2}$,x∈(0,e]恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{2{x}^{2}-6x+5}$-a(x-1).
(1)若对任意的x∈(1,+∞),有f(x)>0恒成立,求实数a的取值范围;
(2)若存在x∈(1,+∞),有f(x)≤0成立,求实数a的取值范围;
(3)分析(1)(2)中a的取值范围的关系,并说明其原因.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在正三棱锥P-ABC中,M为△ABC内(含边界)一动点,且点M到三个侧面PAB、PBC、PCA的距离成等差数列,则点M的轨迹是(  )
A.一条折线段B.一条线段C.一段圆弧D.一段抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,AB=2,AC=$\sqrt{6}$.
(1)求证:AO⊥平面BCD;
(2)求二面角A-BC-D的余弦值;
(3)求AD与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若曲线y=1+$\sqrt{4-{x}^{2}}$(-2≤x≤2)与直线y=k(x-2)+4有两个交点时,求实数k的取值范围.

查看答案和解析>>

同步练习册答案