精英家教网 > 高中数学 > 题目详情
14.已知复数$z=\frac{2i}{1-i}$,若|z|2+az+b=1-i.
(Ⅰ)求$\overline z$;
(Ⅱ)求实数a,b的值.

分析 (I)利用复数的运算法则、共轭复数的定义即可得出.
(II)利用复数的运算法则、复数相等即可得出.

解答 解:( I)$z=\frac{2i(1+i)}{(1-i)(1+i)}=i(1+i)=-1+i$.
∴$\overline{z}$=-1-i.
( II)把z=-1+i代入|z|2+az+b=1-i,
即|-1+i|2+a(-1+i)+b=1-i,
得(-a+b+2)+ai=1-i.
∴$\left\{\begin{array}{l}-a+b+2=1\\ a=-1\end{array}\right.$,解得$\left\{\begin{array}{l}a=-1\\ b=-2\end{array}\right.$.
∴实数a,b的值分别为-1,-2.

点评 本题考查了复数的运算法则、共轭复数的定义、复数相等,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知△ABC中的内角为A,B,C,重心为G,若2sinA$\overrightarrow{GA}$+$\sqrt{3}$sinB$\overrightarrow{GB}$+3sinC$\overrightarrow{GC}$=$\overrightarrow{0}$,则cosB=(  )
A.$\frac{1}{24}$B.$\frac{1}{12}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.命题p:方程$\frac{x^2}{m-9}$+$\frac{y^2}{25-m}$=1表示椭圆;命题q:关于x的不等式|x+3|+|x-4|<m有解.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复平面上表示复数z=1-i(i为虚数单位)的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a>b≥2,现有下列不等式:
①b2<3b-a;②a3+b3>a2b+ab2;③ab>a+b;④$\frac{1}{2}$+$\frac{2}{ab}$>$\frac{1}{a}$+$\frac{1}{b}$.
其中正确的是(  )
A.②④B.①④C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.抛物线x2=2y的焦点到准线的距离是(  )
A.2B.1C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线G:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$与抛物线H:y2=2px在第一象限相交于点A,且有相同的焦点F,AF⊥x轴,则双曲线G的离心率是$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,正方体ABCD-A1B1C1D1的棱长为1,E是棱DD1的中点.
(Ⅰ)求证:CD1∥平面A1BE
(Ⅱ)求三棱锥B1-A1BE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a,b,c∈R+,a+b+c=1,求证:
(1)$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$≤$\sqrt{3}$
(2)ab+bc+ca≤$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案