| A. | a≥-1 | B. | -1≤a≤0 | C. | a≤0 | D. | a≤-1 |
分析 根据函数奇偶性的性质,结合函数单调性的关系进行求解即可.
解答 解:∵函数f(x)是奇函数,∴f(0)=0,
若函数f(x)为R上的单调减函数,
则满足当x>0时,函数为减函数,且当x=0时,-1-a≤0,
此时$\left\{\begin{array}{l}{-\frac{a}{-2}=\frac{a}{2}≤0}\\{-1-a≤0}\end{array}\right.$,即$\left\{\begin{array}{l}{a≤0}\\{a≥-1}\end{array}\right.$,
即-1≤a≤0,
故选:B
点评 本题主要考查函数单调性的应用,根据函数奇偶性和单调性的关系结合分段函数的单调性的性质是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}-\sqrt{2}}{2}$ | B. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | C. | $\frac{\sqrt{6}+\sqrt{2}}{2}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com