精英家教网 > 高中数学 > 题目详情

【题目】(1)利用“五点法”画出函数在长度为一个周期的闭区间的简图.

列表:

x

y

作图:

(2)并说明该函数图象可由的图象经过怎么变换得到的.

(3)求函数图象的对称轴方程.

【答案】(1)见解析(2) 见解析(3) .

【解析】

(1)先列表如图确定五点的坐标,后描点并画图,利用五点法画出函数在长度为一个周期的闭区间的简图;
(2)依据的图象上所有的点向左平移个单位长度,的图象,再把所得图象的横坐标伸长到原来的2倍(纵坐标不变),得到的图象,再把所得图象的纵坐标伸长到原来的2倍(横坐标不变),得到的图象;

(3)令,求出即可.

解:(1)先列表,后描点并画图

0

x

y

0

1

0

-1

0

2)把的图象上所有的点向左平移个单位, 再把所得图象的点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象,即的图象;

3)由

所以函数的对称轴方程是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,过点作抛物线的两切线,切点为.

1)求两切点所在的直线方程;

2)椭圆,离心率为,(1)中直线AB与椭圆交于点PQ,直线的斜率分别为,若,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】地球的公转轨道可以看作是以太阳为一个焦点的椭圆,根据开普勒行星运动第二定律,可知太阳和地球的连线在相等的时间内扫过相等的面积,某同学结合物理和地理知识得到以下结论:①地球到太阳的距离取得最小值和最大值时,地球分别位于图中点和点;②已知地球公转轨道的长半轴长约为千米,短半轴长约为千米,则该椭圆的离心率约为.因此该椭圆近似于圆形:③已知我国每逢春分(日前后)和秋分(日前后),地球会分别运行至图中点和点,则由此可知我国每年的夏半年(春分至秋分)比冬半年(当年秋分至次年春分)要少几天.以上结论正确的是(

A.B.①②C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斐波那契数列满足: .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论错误的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:

1)根据频数分布表计算苹果的重量在的频率;

2)用分层抽样的方法从重量在的苹果中共抽取4个,其中重量在的有几个?

3)在(2)中抽出的4个苹果中,任取2个,写出所有可能的结果,并求重量在中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为at为参数).O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθsinθ)=1.

1)当t为参数,α时,判断曲线C与直线l的位置关系;

2)当α为参数,t2时,直线l与曲线C交于AB两点,设P10),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的左、右焦点分别为,已知都在椭圆上.

1)求椭圆的方程;

2)过点的直线与椭圆相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求曲线在点处的切线方程;

2)求函数上的极值;

3)设函数,若,且对任意的实数,不等式恒成立(e是自然对数的底数),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】202048日零时正式解除离汉通道管控,这标志着封城76天的武汉打开城门了.在疫情防控常态下,武汉市有序复工复产复市,但是仍然不能麻痹大意,仍然要保持警惕,严密防范、慎终如始.为科学合理地做好小区管理工作,结合复工复产复市的实际需要,某小区物业提供了两种小区管理方案,为了了解哪一种方案最为合理有效,物业随机调查了50名男业主和50名女业主,每位业主对两种小区管理方案进行了投票(只能投给一种方案),得到下面的列联表:

方案

方案

男业主

35

15

女业主

25

25

1)分别估计方案获得业主投票的概率;

2)判断能否有95%的把握认为投票选取管理方案与性别有关.

附:.

查看答案和解析>>

同步练习册答案