精英家教网 > 高中数学 > 题目详情
函数f(x)为奇函数,在(0,+∞)上递增,且f(3)=0,则不等式x•f(x)<0的解集为
 
考点:奇偶性与单调性的综合
专题:函数的性质及应用,不等式的解法及应用
分析:根据函数的奇偶性和单调性之间的关系,画出函数f(x)的草图,即可得到不等式的解集.
解答: 解:∵奇函数f(x)在(0,+∞)上为增函数,f(3)=0,
∴函数f(x)在(-∞,0)上为增函数,且f(-3)=-f(3)=0,
作出函数f(x)的草图:

如图:
则不等式等价为x>0时,f(x)<0,此时0<x<3
当x<0时,f(x)>0,此时-3<x<0,
综上不等式的解为-3<x<0或0<x<3,
故不等式的解集为{x|-3<x<0或0<x<3},
故答案为:(-3,0)∪(0,3);
点评:本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:﹙-
1
2
+
3
2
i﹚n+﹙-
1
2
+
3
2
i﹚2n﹙n∈Z﹚.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
cos2α
2
sin(a+
π
4
)
=
5
2
,则tana+
1
tana
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当a,b满足
 
时,集合A={x|ax+2=b}=R;当a,b满足
 
时,集合A={x|ax+2=b}=∅

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的是
 

①点(
π
8
,0)
为函数f(x)=tan(2x+
π
4
)
的一个对称中心;
②要得到函数y=sin(-2x+
π
3
)的图象,只要函数y=sin(-2x)向右平移
π
6
个单位;
③若f(x)=cosxsinx(x∈R),则f(x)的最小正周期是2π;
④“sinα=sinβ”的充要条件是“α+β=(2k+1)π或α-β=2kπ(k∈Z)”.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x+2)是偶函数,f(x+2)在[0,+∞)上为减函数,则f(-1),f(0),f(3)的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若∠C为钝角,则下列结论正确的是(  )
A、a2+b2>c2
B、a2+b2<c2
C、a2+b2=c2
D、cosC>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ∈R,则“θ=
π
3
”是“cosθ=
1
2
”的(  )
A、充要条件
B、充分不必要条件
C、必要不充分条件
D、既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β,已知铁塔BC部分的高为m,试求山高CD.

查看答案和解析>>

同步练习册答案