| A. | y=x2-$\frac{3}{x}$ | B. | y=xlnx | C. | y=sin(πx) | D. | y=x3-2x2 |
分析 分别求出四个函数的导数,由导数的几何意义,可得在x=1处切线的斜率,选出斜率为-1的即可.
解答 解:在x=1处切线的倾斜角为$\frac{3π}{4}$,即有切线的斜率为tan$\frac{3π}{4}$=-1.
对于A,y=x2-$\frac{3}{x}$的导数为y′=2x+$\frac{3}{{x}^{2}}$,可得在x=1处切线的斜率为5;
对于B,y=xlnx的导数为y′=1+lnx,可得在x=1处切线的斜率为1;
对于C,y=sin(πx)的导数为y′=πcos(πx),可得在x=1处切线的斜率为πcosπ=-π;
对于D,y=x3-2x2的导数为y′=3x2-4x,可得在x=1处切线的斜率为3-4=-1.
故选:D.
点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义,正确求导是解题的关键,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 8π | C. | 16π | D. | 32π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,4] | B. | [$\frac{1}{4}$,2] | C. | [$\frac{\sqrt{2}}{2}$,4] | D. | [$\frac{1}{2}$,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>$\frac{1}{2}$} | B. | {x|x<$\frac{1}{4}$} | C. | {x|$\frac{1}{4}$<x<$\frac{1}{2}$} | D. | {x|x>$\frac{1}{2}$或x<$\frac{1}{4}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 144 | B. | 160 | C. | 180 | D. | 240 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com