精英家教网 > 高中数学 > 题目详情
19.定义在R上的函数f(x)满足f(x+2)=$\frac{1}{2}$f(x),当x∈[0,2]时,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2x,0≤x<1}\\{{-2}^{1-|x-\frac{3}{2}|,1≤x<2}}\end{array}\right.$,函数g(x)=x3+3x2+m.若对任意s∈[-4,-2),存在t∈[-4,-2),不等式f(s)-g(t)≥0成立,则实数m的取值范围是(  )
A.(-∞,-12]B.(-∞,14]C.(-∞,-8]D.(-∞,$\frac{31}{2}$]

分析 对任意s∈[-4,-2),存在t∈[-4,-2),不等式f(s)-g(t)≥0成立,等价于:f(s)min≥g(t)min.利用分段函数的性质可得f(s)min,利用导数研究函数的单调性极值与最值可得g(t)min

解答 解:对任意s∈[-4,-2),存在t∈[-4,-2),不等式f(s)-g(t)≥0成立,
等价于:f(s)min≥g(t)min
定义在R上的函数f(x)满足f(x+2)=$\frac{1}{2}$f(x),
当x∈[0,2]时,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2x,0≤x<1}\\{{-2}^{1-|x-\frac{3}{2}|,1≤x<2}}\end{array}\right.$,
∴x∈[0,2],f(0)=$\frac{1}{2}$为最大值,
∵f(x+2)=$\frac{1}{2}$f(x),
∴f(x)=2f(x+2),
∵x∈[-2,0],
∴f(-2)=2f(0)=2×$\frac{1}{2}$=1,
∵x∈[-4,-2],
∴f(-4)=2f(-2)=2×1=2,
∵?s∈[-4,2),
∴f(s)=2,
∵f(x)=2f(x+2),
x∈[-2,0],
∴f(-$\frac{1}{2}$)=2f( $\frac{3}{2}$)=2×(-2)=-4,
∵x∈[-4,-3],
∴f(-$\frac{5}{2}$)=2f(-$\frac{1}{2}$)=-8,
∵?s∈[-4,2),
∴f(s)=-8,
∵函数g(x)=x3+3x2+m,
∴g′(x)=3x2+6x,
3x2+6x>0,x>0,x<-2,
3x2+6x<0,-2<x<0,
3x2+6x=0,x=0,x=-2,
∴函数g(x)=x3+3x2+m,在(-∞,-2)(0,+∞)单调递增.
在(-2,0)单调递减,
∴?t∈[-4,-2),g(t)=g(-2)=4+m,
g(t)=g(-4)=m-16,
∵不等式f(s)-g(t)≥0,
∴-8≥m-16,
故实数满足:m≤8,
故选:C.

点评 本题考查了分段函数的性质、利用导数研究函数的单调性极值与最值、等价转化方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知等比数列{an},a1=2,a4=16
(1)求数列{an}的通项公式.
(2)求S10的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某单位N名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35).第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.
下面是年龄的分布表
 区间[25,30)[30,35)[35,40)[40,45)[45,50)
 人数 28 a b  
(1)求正整数a、b、N的值;
(2)现要从年龄低于40岁的员工中用分层抽样的方法抽取42人,则年龄在第1、2、3组的员工人数分别是多少?
(3)为了估计该单位员工的阅读习惯,对第1、2、3组中抽出的42人是否喜欢阅读国学类书籍进行了调查,调查结果如表所示:(单位:人)
 喜欢阅读国学类  不喜欢阅读国学类 合计
 男 16 4 20
 女 8 14 22
 合计 24 18 42
根据表中数据,能否在犯错误的概率不超过0.5%的前提下认为该单位员工“是否喜欢阅读国学类书籍和性别有关系”?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k00.05 0.025 0.010 0.005 0.001 
 k0 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图是利用我国古代数学家刘徽的割圆术设计的程序框图,则输出的n值为(  )
参考数据:$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305.
A.12B.24C.48D.96

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式组$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y+2≤0}\\{x+y-4≤0}\end{array}\right.$的解集记作D,实数x,y满足如下两个条件:①?(x,y)∈D,y≥ax;②?(x,y)∈D,x-y≤a.则实数a的取值范围为[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知正项数列{an}的前n项和为Sn,且4Sn=(an+1)2(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=2n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的槪率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=2$\sqrt{3}$,C=$\frac{π}{3}$,tanA=$\frac{3}{4}$,则sinA=$\frac{3}{5}$,b=4+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}为等比数列,Sn是它的前n项和,设Tn=S1+S2+…+Sn,若a2•a3=2a1,且a4与2a7的等差中项为$\frac{5}{4}$,则T4=98.

查看答案和解析>>

同步练习册答案