精英家教网 > 高中数学 > 题目详情
19.如图,E为正方体的棱AA1中点,F为棱AB上一点,且∠C1EF=90°,则|AF|:|FB|=1:3.

分析 设出正方体的棱长,求出C1E,利用∠C1EF=90°,通过C1F求出x的值,即可得到结果

解答 解:设正方体的棱长为2,由题意可知C1E=$\sqrt{{1}^{2}+(2\sqrt{2})^{2}}$=3,
∠C1EF=90°,所以设AF=x,12+x2+C1E2=22+22+(2-x)2
解得:x=$\frac{1}{2}$,所以AF:FB=$\frac{1}{2}$:(2-$\frac{1}{2}$)=1:3;
故答案为:1:3.

点评 本题考查正方体的性质运用以及线段的长度计算,考查直角三角形的利用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数y=lg(2sinx-$\sqrt{2}$)-$\sqrt{1-2cosx}$的定义域为[$\frac{π}{6}$+2kπ,2kπ+$\frac{3π}{4}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,ABCD为正方形,BDEF为矩形,AB=2BF,DE⊥平面ABCD,G为EF中点.
(Ⅰ)求证:平面ABG⊥平面CDG;
(Ⅱ)求二面角C-FG-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设x1,x2是函数f(x)=lnx+$\frac{1}{2}$x2-(a+$\frac{4}{a}$)x+1的两个极值点,且x1<x2,a>0.
(Ⅰ)求证:x1x2为定值;
(Ⅱ)求f(x1)+f(x2)的取值范围;
(Ⅲ)求f(x2)-f(x1)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,椭圆C:x2+$\frac{{y}^{2}}{m}$=1(0<m<1)的左顶点为A,M是椭圆C上异于点A的任意一点,点P与点A关于点M对称.
(Ⅰ)若点P的坐标为($\frac{7}{5}$,$\frac{4\sqrt{3}}{5}$),求m的值;
(Ⅱ)若椭圆C上存在点M,使得OP⊥OM,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.正方体ABCD-A1B1C1D1的面BCC1B1内有一点M,满足M到点B的距离等于点M到面CDD1C1的距离,则点M的轨迹是(  )
A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在正三棱柱ABC-A1B1C1中(底面为正三角形且侧棱垂直于底面的三棱柱叫正三棱柱),各棱长都是4,D是BC的中点.
(Ⅰ)求证:A1C∥平面AB1D;
(Ⅱ)求直线A1C与平面BCC1B1所成角的正弦值;
(Ⅲ)证明在棱CC1上存在一点F,使得DF⊥AC,并求AF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.将函数f1(x)=sinx与函数f2(x)=cosx线性组构成的函数f(x)=Af1(x)+Bf2(x)(A,B是常数,x∈R)图象称为(A,B)曲线.
(1)若(A,B)曲线经过点P($\frac{π}{3}$,0),Q(π,-2$\sqrt{3}$),求A、B的值;
(2)若(A,B)曲线与射线y=2(x≥0)的所有交点的横坐标依次组成一个等差数列{an},且a1=$\frac{π}{3}$,求数列{an}的通项以及常数A、B的值;
(3)在(1)的条件下,求证:对x∈(0,+∞),恒有f(x)>-x-$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,∠B=30°,∠A=90°,M是边BC的中点,现将△ABM沿AM旋转,当△ABM转到与△ACM所在面垂直时,CB与平面AMC所成的角的正弦值为$\frac{\sqrt{30}}{10}$;异面直线CB与AM所成角的余弦值是$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

同步练习册答案