精英家教网 > 高中数学 > 题目详情
19.抛物线C顶点在坐标原点,焦点在x轴上,且过点P(2,2).
(1)求抛物线的标准方程和焦点坐标;
(2)直线l:x-y-1=0与抛物线C相交于M,N两点,求|MN|.

分析 (1)利用待定系数法求抛物线的标准方程,可得焦点坐标;
(2)直线l:x-y-1=0与抛物线C相交于M,N两点,利用韦达定理、弦长公式求|MN|.

解答 解:(1)设抛物线的方程为y2=mx(m≠0),代入P (2,2)得m=2
所以抛物线的标准方程为y2=2x,焦点坐标为$(\frac{1}{2},0)$.                 …(6分)
(2)将y=x-1代入y2=2x得x2-4x+1=0,
设M(x1,y1),N(x1,y1
可得${x_1}+{x_2}=4,{x_1}•{x_2}=1∴|{MN}|=2\sqrt{6}$.                           …(12分)

点评 本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow a=({1,0,2})$,$\overrightarrow b=({-1,1,0})$,$\overrightarrow c=({-1,y,2})$,若$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$三向量共面,则实数y的值为(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,△ABC中,$\frac{CD}{DA}=\frac{AE}{EB}=\frac{1}{2}$,记$\overrightarrow{BC}=\overrightarrow{a,}\overrightarrow{CA}=\overrightarrow b$,则$\overrightarrow{DE}$=$\frac{1}{3}(\overrightarrow b-\overrightarrow a)$.(用$\overrightarrow a$和$\overrightarrow b$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线C1:$\frac{x^2}{16}-\frac{y^2}{4}$=1,双曲线C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,M 是双曲线C2 一条渐近线上的点,且OM⊥MF2,若△OMF2的面积为 16,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.平面截球得到的半径是3的圆面,球心到这个平面的距离是4,则该球的表面积是(  )
A.20πB.$\frac{416\sqrt{3}π}{3}$C.$\frac{500π}{3}$D.100π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知cosα=-$\frac{2}{3}$,则$\frac{1}{1+ta{n}^{2}α}$=$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是平面上的三个单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,则(2$\overrightarrow{a}$+$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)的最小值是(  )
A.-2B.-1C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若椭圆的两个焦点和短轴的一个顶点构成正三角形,则此椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.双曲线C的中心在原点,右焦点为F($\frac{2\sqrt{3}}{3}$,0),渐近线方程为y=±$\sqrt{3}$x.
(1)求双曲线C的方程;
(2)设点P是双曲线上任一点,该点到两渐近线的距离分别为m、n.证明m•n是定值.

查看答案和解析>>

同步练习册答案