精英家教网 > 高中数学 > 题目详情
20.“k>$-\frac{{\sqrt{3}}}{3}$”是“直线y=k(x+1)与圆(x-1)2+y2=1相交”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 结合直线和圆相交的条件,利用充分条件和必要条件的定义进行判断.

解答 解:直线y=k(x+1)与圆(x-1)2+y2=1相交,则圆心(1,0)到直线kx-y+k=0的距离d<r,
即$\frac{|k+k|}{\sqrt{1+{k}^{2}}}$<1,即2|k|<$\sqrt{1+{k}^{2}}$,
解得k<-$\frac{\sqrt{3}}{3}$或k>$\frac{\sqrt{3}}{3}$,
∴k>$-\frac{{\sqrt{3}}}{3}$”是“直线y=k(x+1)与圆(x-1)2+y2=1相交的既不充分也不必要条件.
故选:D.

点评 本题主要考查直线和圆的位置关系的应用,以及充分条件和必要条件的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列命题正确的是(  )
A.?x0∈R,sinx0+cosx0=$\frac{3}{2}$
B.?x≥0且x∈R,2x>x2
C.已知a,b为实数,则a>2,b>2是ab>4的充分条件
D.已知a,b为实数,则a+b=0的充要条件是$\frac{a}{b}$=-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知α∈(0,$\frac{π}{2}$),sin2α=$\frac{1}{2}$,则sin($α+\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若双曲线焦距是8,且经过点(-$\frac{7}{3}$,4),则焦点在y轴上的双曲线的标准方程是$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{7}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知cos2(α+$\frac{π}{4}$)=$\frac{1}{3}$,则sin2α=(  )
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法中正确的是(  )
A.命题“p∧q”为假命题,则p,q均为假命题
B.命题“?x∈(0,+∞),2x>1”的否定是“?x°∈(0,+∞),2x°≤1”
C.命题“若a>b,则a2>b2”的逆否命题是“若a2<b2,则a<b”
D.设x∈R,则“x>$\frac{1}{2}$”是“2x2+x-1>0”的必要而不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)图象如图,f'(x)是f(x)的导函数,则下列数值排序正确的是(  )
A.0<f'(2)<f'(3)<f(3)-f(2)B.0<f'(3)<f'(2)<f(3)-f(2)C.0<f'(3)<f(3)-f(2)<f'(2)D.0<f(3)-f(2)<f'(2)<f'(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x,y满足$\left\{\begin{array}{l}{x-1≤0}\\{y-2≤0}\\{2x+y-2>0}\end{array}\right.$若$\overrightarrow{m}$=(x+1,y)则$\sqrt{{\overrightarrow{m}}^{2}}$的取值范围为(  )
A.(15,2)B.($\frac{29}{2}$,2$\sqrt{2}$)C.(17,2$\sqrt{2}$)D.($\frac{4\sqrt{5}}{5}$,2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:lg(x2-2x-2)≥0;命题q:0<x<4.若p且q为假,p或q为真,求实数x的取值范围.

查看答案和解析>>

同步练习册答案