精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为自然对数的底数.(参考数据:

(1)讨论函数的单调性;

(2)若时,函数有三个零点,分别记为,证明:

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)先求函数导数,根据参数a讨论:当时, 是常数函数,没有单调性.当时,先减后增;当时,先增后减;(2)先化简方程,整体设元转化为一元二次方程: .其中,再利用导数研究函数的图像,根据图像确定根的取值范围,进而可证不等式.

试题解析:解:(1)因为的定义域为实数

所以

①当时, 是常数函数,没有单调性.

②当时,由,得;由,得

所以函数上单调递减,在上单调递增.

③当时,由得, ; 由,得

所以函数上单调递减,在上单调递增.

(2)因为

所以,即

,则有,即

设方程的根为,则

所以是方程的根.

由(1)知单调递增,在上单调递减.

且当时, ,当时,

如图,依据题意,不妨取,所以

因为

易知,要证,即证

所以,又函数上单调递增,

所以,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线 与圆 )相交于四个点.

(Ⅰ)求的取值范围;

(Ⅱ)当四边形的面积最大时,求对角线的交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2m)(x+m+3)(其中m<﹣1),g(x)=2x﹣2.
(1)若命题p:log2[g(x)]≥1是假命题.求x的取值范围;
(2)若命题q:x∈(﹣∞,3).命题r:x满足f(x)<0或g(x)<0为真命题.¬r是¬q的必要不充分条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(1)设p:实数x满足(x﹣3a)(x﹣a)<0,其中a>0,q:实数x满足 ,若p是q的充分不必要条件,求实数a的取值范围;
(2)设命题p:“函数 无极值”;命题q:“方程 表示焦点在y轴上的椭圆”,若p或q为真命题,p且q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=
(1)在下列直角坐标系中画出f(x)的图象;

(2)若f(x)=3,求x的值;
(3)看图象写出函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+1),g(x)=loga(1﹣x)其中(a>0且a≠1).
(1)判断f(x)﹣g(x)的奇偶性,并说明理由;
(2)求使f(x)﹣g(x)>0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆锥和圆柱的组合体(它们的底面重合),圆锥的底面圆半径为 为圆锥的母线, 为圆柱的母线, 为下底面圆上的两点,且 .

(1)求证:平面平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(Ⅰ)讨论函数的极值点的个数;

(Ⅱ)若函数的图象与函数的图象有两个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系中,曲线轴负半轴交于点,直线相切于 上任意一点, 上的射影, 的中点.

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)轨迹轴交于,点为曲线上的点,且 ,试探究三角形的面积是否为定值,若为定值,求出该值;若非定值,求其取值范围.

查看答案和解析>>

同步练习册答案