精英家教网 > 高中数学 > 题目详情
若直线y=kx-k交抛物线y2=4x于A,B两点,且线段AB中点到y轴的距离为3,则|AB|=(  )
A、12B、10C、8D、6
考点:直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标,求出线段AB的中点到y轴的距离.
解答: 解:直线y=kx-k恒过(1,0),恰好是抛物线y2=4x的焦点坐标,
设A(x1,y1) B(x2,y2
抛物y2=4x的线准线x=-1,线段AB中点到y轴的距离为3,x1+x2=6,
∴|AB|=|AF|+|BF|=x1+x2+2=8,
故选:C.
点评:本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对的边分别为a、b、c,若c2≤ab且C=
π
3
,又△ABC外接圆面积为2π,则△ABC的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知lg2=a,lg3=b,求下列各式的值:
(1)lg6;(2)log34;
(3)log212;(4)lg
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四面体P-ABC中,PA=4,AC=2
7
,PB=BC=2
3
,PA⊥平面PBC,则四面体P-ABC的内切球半径与外接球半径的比(  )
A、
3
2
16
B、
3
2
8
C、
2
16
D、
2
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,m为整数(m>0),若a和b被m除得的余数相同,则称a和b对m同余记为a≡b(bmodm),已知a=1+C201+C2022+C20322+…+C2020219,a≡b(bmod10),则b的值可以是(  )
A、2015B、2013
C、2011D、2009

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
4
+y2=1
两个焦点分别是F1,F2,点P是椭圆上任意一点,则
PF1
PF2
的取值范围是(  )
A、[1,4]
B、[1,3]
C、[-2,1]
D、[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

为了研究男羽毛球运动员的身高x(单位:cm)与体重y(单位:kg)的关系,通过随机抽样的方法抽取5名运动员,测得他们的身高和体重的关系如下表:
身高(x)172174176178180
体重(y)7473767577
从这5人中随机抽取2人,将他们的体重作为一个样本,则该样本的平均数与总体中体重的平均数之差的绝对值不超过1的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为2的正方形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使得平面A′DE⊥平面BCDE,F为线段A′C的中点.

(Ⅰ)求证:BF∥平面A′DE;
(Ⅱ)求直线A′B与平面A′DE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(x-1)lnx的零点个数为
 

查看答案和解析>>

同步练习册答案