精英家教网 > 高中数学 > 题目详情
10.如图所示,程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“mMODn”表示m除以n的余数),若输入的m,n分别为2016,612,则输出的m=(  )
A.0B.36C.72D.180

分析 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量m的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得
m=2016,n=612
第一次执行循环体,r=180,m=612,n=180,不满足退出循环的条件;
第二次执行循环体,r=72,m=180,n=72,不满足退出循环的条件;
第三次执行循环体,r=36,m=72,n=36,不满足退出循环的条件;
第四次执行循环体,r=0,m=36,n=0,满足退出循环的条件;
故输出的m值为36,
故选:B.

点评 本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.复数z满足(1+i)z=2-3i,则复数z的虚部是(  )
A.$-\frac{5}{2}i$B.$-\frac{1}{2}i$C.$-\frac{5}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和为Sn,且Sn=1-an
(1)证明:{an}是等比数列,并求其通项公式;
(2)若bn=log2an,令${c_n}=\frac{1}{{{b_{2n-1}}{b_{2n+1}}}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={a1,a2,…an}(n∈N*),规定:若集合A1∪A2∪…∪Am=A(m≥2,m∈N*),则称{A1,A2,…,Am}为集合A的一个分拆,当且仅当:A1=B1,A2=B2,…Am=Bm时,{A1,A2,…,Am}与{B1,B2,…,Bm}为同一分拆,所有不同的分拆种数记为fn(m).例如:当n=1,m=2时,集合A={a1}的所有分拆为:{a1}∪{a1},{a1}∪∅,∅∪{a3},即f1(2)=3.
(1)求f2(2);
(2)试用m、n表示fn(m);
(3)证明:$\sum_{i=1}^{m}$fn(i)与m同为奇数或者同为偶数(当i=1时,规定fn(1)=1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线C:y2=2px(p>0)的焦点为F,$A({0\;\;,\;\;\sqrt{3}})$,抛物线C上的点B满足AB⊥AF,且|BF|=4,则p=2或6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{bn}为等比数列,且b1008=e(e为自然对数的底数),数列{an}首项为1,且an+1=an•bn,则lna2016的值为2015.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若复数z满足z=(3+4i)i,则z的实部为(  )
A.3B.-3C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设△ABC的内角A,B,C所对边分别为a,b,c若a=3,$b=\sqrt{3}$,$A=\frac{π}{3}$,则B=(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\left\{\begin{array}{l}{log_3}x,x>0\\ f({x+2}),x≤0\end{array}\right.$,则$f({f({\frac{1}{9}})})$=log32.

查看答案和解析>>

同步练习册答案