分析 (1)每个细菌被取的概率均为$\frac{2}{5}$,三个细菌独立,由此能求出P(x=1).
(2)由题意X~B(3,$\frac{2}{5}$),由此能求出X的概率分布列.
(3)由X~B(3,$\frac{2}{5}$),利用二项分布的性质能求出E(X),D(X).
解答 解:(1)∵在10L水中有3个细菌,从中任取4L水,
∴每个细菌被取的概率均为$\frac{2}{5}$,三个细菌独立,
∴P(x=1)=${C}_{3}^{1}(\frac{2}{5})(\frac{3}{5})^{2}$=$\frac{54}{125}$.
(2)由题意X~B(3,$\frac{2}{5}$),
P(X=0)=${C}_{3}^{0}(\frac{2}{5})^{0}(\frac{3}{5})^{3}$=$\frac{27}{125}$,
P(x=1)=${C}_{3}^{1}(\frac{2}{5})(\frac{3}{5})^{2}$=$\frac{54}{125}$.
P(X=2)=${C}_{3}^{2}(\frac{2}{5})^{2}(\frac{3}{5})$=$\frac{36}{125}$,
P(X=3)=${C}_{3}^{3}(\frac{2}{5})^{3}$=$\frac{8}{125}$,
∴X的概率分布列为:
| X | 0 | 1 | 2 | 3 |
| P | $\frac{27}{125}$ | $\frac{54}{125}$ | $\frac{36}{125}$ | $\frac{8}{125}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2016-2017学年山西忻州一中高一上学期新生摸底数学试卷(解析版) 题型:解答题
如图,在
中,
,
分别为
的中点,
交
的延长线于点
.
![]()
(1)求证:四边形
是平行四边形;
(2)当
时,求证:四边形
是菱形.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com