精英家教网 > 高中数学 > 题目详情
5.已知直线l1:ax+(a+1)y-a=0和l2:(a+2)x+2(a+1)y-4=0.
(1)若l1∥l2,求a的值.
(2)若l1⊥l2,求a的值.

分析 根据两直线垂直和平行的充要条件即可求出a的值.

解答 解:(1)l1:ax+(a+1)y-a=0和l2:(a+2)x+2(a+1)y-4=0,
当l1∥l2时,2a(a+1)-(a+1)(a+2)=0,且-4a≠-a(a+2),
解得a=-1,
(2)当l1⊥l2时,a(a+2)+2(a+1)(a+1)=0,
解得a=-1+$\frac{\sqrt{3}}{3}$或a=-1-$\frac{\sqrt{3}}{3}$.

点评 本题考查了直线相互平行与相互垂直的充要条件,推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.双曲线C的一条渐近线方程是:x-2y=0,且曲线C过点$(2\sqrt{2},1)$.
(1)求双曲线C的方程;
(2)设曲线C的左、右顶点分别是A1、A2,P为曲线C上任意一点,PA1、PA2分别与直线l:x=1交于M、N,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.点E是正方形ABCD的边DC的中点,F是BE中点,且$\overrightarrow{AB}$=$\overrightarrow{a}$.$\overrightarrow{AD}$=$\overrightarrow{b}$.则$\overrightarrow{DF}$=(  )
A.$\frac{1}{2}\overrightarrow{a}$-$\frac{3}{4}$$\overrightarrow{b}$B.$\frac{1}{2}\overrightarrow{b}$-$\frac{3}{4}\overrightarrow{a}$C.$\frac{3}{4}\overrightarrow{b}$-$\frac{1}{2}\overrightarrow{a}$D.$\frac{3}{4}\overrightarrow{a}$-$\frac{1}{2}\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若x>0,求函数y=x+$\frac{4}{x}$的最小值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在10L水中有3个细菌,从中任取4L水,设其中含有细菌的个数为X,求:
(1)P(X=1);
(2)X的概率分布;
(3)E(X),D(X).(注:结果都用小数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.判断直线l1:x-2y+1=0与直线l2:2x-2y+3=0的位置关系,如果相交,求出交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1有(  )
A.相同短轴B.相同长轴C.相同离心率D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1、F2,在双曲线C上存在点P,满足△PF1F2的周长等于双曲线C的实轴长的3倍,则双曲线C的离心率的取值范围是(  )
A.(1,$\frac{3}{2}$)B.(0,$\frac{3}{2}$)C.(1,$\frac{5}{2}$)D.(0,$\frac{5}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若$\frac{1}{a}$<$\frac{1}{b}$<0,则下列结论:①a2>b2;②ab<b2;③$\frac{b}{a}$+$\frac{a}{b}$>2;④|a|+|b|>|a+b|.其中正确的结论是②③.

查看答案和解析>>

同步练习册答案