分析 (1)利用等比数列的通项公式即可得出.
(2)利用等差数列的通项公式与求和公式即可得出.
解答 解:(1)设等比数列的公比为q,由已知,得24=3q3,解得q=2,
∴${a_n}={a_1}•{q^{n-1}}=3•{2^{n-1}}$.
(2)由(1)得a2=6,a5=48,
∴b2=6,b9=48.
设等差数列{bn}的公差为d,则$\left\{\begin{array}{l}{b_1}+d=6\\{b_1}+8d=48\end{array}\right.$
解得$\left\{\begin{array}{l}{b_1}=0\\ d=6\end{array}\right.$,
∴${S_n}=n{b_1}+\frac{n(n-1)}{2}d=3{n^2}-3n$.
点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{4}-\frac{{3{y^2}}}{4}$=1 | B. | $\frac{x^2}{12}-\frac{y^2}{4}$=1 | C. | $\frac{x^2}{4}-\frac{y^2}{12}$=1 | D. | $\frac{{3{x^2}}}{4}-\frac{y^2}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2-i | B. | 2+3i | C. | $\frac{1}{2}$-i | D. | $\frac{1}{2}+i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com