精英家教网 > 高中数学 > 题目详情
1.已知i是虚数单位,复数z满足z(3+4i)=1+i,则复平面内表示z的共轭复数的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、共轭复数的定义、几何意义即可得出.

解答 解:复数z满足z(3+4i)=1+i,∴z(3+4i)(3-4i)=(1+i)(3-4i),∴5z=7-i,∴z=$\frac{7}{5}$-$\frac{1}{5}$i.
∴$\overline{z}$=$\frac{7}{5}$+$\frac{1}{5}$i.
则复平面内表示z的共轭复数的点$(\frac{7}{5},\frac{1}{5})$在第一象限.
故选:A.

点评 本题考查了复数的运算法则、共轭复数的定义、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中,已知点F(1,0),直线l:x=-1,动直线l′垂直l于点H,线段HF的垂直平分线交l′于点P,设点P的轨迹为C.
(1)求曲线C的方程;
(2)以曲线C上的点P(x0,y0)(y0>0)为切点作曲线C的切线l1,设l1分别与x,y轴交于A,B两点,且l1恰与以定点M(a,0)(a>2)为圆心的圆相切,当圆M的面积最小时,求△ABF与△PAM面积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系中,曲线C的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=2sinα}\end{array}\right.$(α为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$,(t为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为($\sqrt{3}$,$\frac{π}{2}$).
(1)求点P的直角坐标,并求曲线C的普通方程;
(2)设直线l与曲线C的两个交点为A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等比数列{an}中,a1=3,a4=24,
(1)求数列{an}的通项公式;
(2)设等差数列{bn}中,b2=a2,b9=a5,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.i是虚数单位,设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知双曲线$C:\frac{x^2}{4}-{y^2}=1$的左右两个顶点是A1,A2,曲线C上的动点P,Q关于x轴对称,直线A1P与A2Q交于点M,
(1)求动点M的轨迹D的方程;
(2)点E(0,2),轨迹D上的点A,B满足$\overrightarrow{EA}=λ\overrightarrow{EB}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.等差数列{an}的各项均为正数,a1=1,前n项和为Sn;数列{bn}为等比数列,b1=1,且b2S2=6,b2+S3=8.
(1)求数列{an}与{bn}的通项公式;
(2)求{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知i为虚数单位,复数z满足z(1-i)=1+i,则z2017=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.($\sqrt{x}$-$\frac{2}{x}$)8的展开式中,x的系数为(  )
A.-112B.112C.56D.-56

查看答案和解析>>

同步练习册答案