精英家教网 > 高中数学 > 题目详情
17.如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=AlC1=l,AAl=4,BBl=2,CCl=3.
(1)设点O是AB的中点,求直线OC与直线B1C1所成角的大小;
(2)求此几何体的体积.

分析 (1)取A1B1中点D,连接OD,C1D,确定OC与B1C1所成的角即DC1与B1C1所成的角,即可得出结论;
(2)由题意及图形利用体积分割的方法,把不规则的几何体分割成两个规则的几何体,利用相应的体积公式进行求解.

解答 解:(1)取A1B1中点D,连接OD,C1D,四边形AA1B1B为梯形,
则OD=3,又由CC1=3,且OD∥CC1,则ODC1C为平行四边形,
∴OC∥DC1
∴OC与B1C1所成的角即DC1与B1C1所成的角,故所求角为30°  ….(5分)
(2)如图所示,∵BH=$\frac{\sqrt{3}}{2}$
∴${V}_{B-A{A}_{1}{C}_{1}C}$=$\frac{1}{3}{S}_{△{A}_{1}{C}_{1}C}$•BH=$\frac{1}{3}•\frac{1}{2}•(1+2)•1•\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$,
∵${V}_{{A}_{1}{B}_{1}{C}_{1}-{A}_{2}B{C}_{2}}$=${S}_{{A}_{1}{B}_{1}{C}_{1}}•B{B}_{1}$=$\frac{1}{2}•\frac{\sqrt{3}}{2}•2$=$\frac{\sqrt{3}}{2}$
∴几何体的体积=${V}_{B-A{A}_{1}{C}_{1}C}$+${V}_{{A}_{1}{B}_{1}{C}_{1}-{A}_{2}B{C}_{2}}$=$\frac{3\sqrt{3}}{4}$…(10分)

点评 此题重点考查了直线OC与直线B1C1所成角,考查了利用分割法求几何体的体积,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.计算:sin1590°cos(-1830°)+tan1395°tan(-1200°).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,边长为4的正方形ABCD中,点E,F分别是AB,BC上的点,将△AED和△DCF折起,使A,C两点重合于P.

(1)求证:PD⊥EF;
(2)当BE=BF=$\frac{1}{4}$BC时,求四棱锥P-BEDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若a,b是非零实数,m=$\frac{a}{|a|}$+$\frac{ab}{|ab|}$-$\frac{|b|}{b}$,则m所有取值的集合为(  )
A.{-3,1}B.{-3,1,3}C.{-2,1,3}D.{-3,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.体积为V的正方体,过不相邻四顶点连成一个正四面体,则该正四面体的体积是(  )
A.$\frac{V}{2}$B.$\frac{V}{3}$C.$\frac{V}{4}$D.$\frac{V}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任意一点到两个焦点的距离之和为4,且离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)设椭圆的右焦点为F,是否存在直线l,使得直线l与椭圆C相交于A,B两点,满足两个条件:①线段AB的中点P在直线x+2y=0上;②△FAB的面积有最大值.如果存在,请求出面积的最大值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的各项均为正数,其前n项和为Sn,且满足a1=1,an+1=2$\sqrt{{S}_{n}}$+1,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)是否存在正整数k,使ak,S2k-1,a4k成等比数列?若存在,求k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,P为椭圆上异于A1,A2的点,PA1和PA2的斜率之积为-$\frac{3}{4}$.
(1)求椭圆C的标准方程;
(2)设O为椭圆中心,M,N是椭圆上异于顶点的两个动点,求△MON面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x+$\frac{k}{x}$,k≠0.
(1)若k=-1,求曲线在点(1,0)处的切线方程;
(2)若k>0,求函数f(x)的单调区间和极值.

查看答案和解析>>

同步练习册答案