精英家教网 > 高中数学 > 题目详情
12.体积为V的正方体,过不相邻四顶点连成一个正四面体,则该正四面体的体积是(  )
A.$\frac{V}{2}$B.$\frac{V}{3}$C.$\frac{V}{4}$D.$\frac{V}{5}$

分析 如图所示,设正方体的棱长为a,则${V}_{{A}_{1}-BD{C}_{1}}$=${V}_{正方体ABCD-{A}_{1}{B}_{1}{C}_{1}{D}_{1}}$-$4{V}_{三棱锥{A}_{1}-ABD}$,即可得出.

解答 解:如图所示,设正方体的棱长为a,
则${V}_{{A}_{1}-BD{C}_{1}}$=${V}_{正方体ABCD-{A}_{1}{B}_{1}{C}_{1}{D}_{1}}$-$4{V}_{三棱锥{A}_{1}-ABD}$
=${a}^{3}-4×\frac{1}{3}a×\frac{1}{2}{a}^{2}$
=$\frac{1}{3}{a}^{3}$
=$\frac{V}{3}$.

点评 本题考查了正方体与三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知A={x|x2-3x+2≤0},B={x}x2-(a+1)x+a≤0}.
(1)若A⊆B,求a的取值范围;
(2)若B⊆A,求a的取值范围;
(3)若A∩B为仅含有一个元素的集合,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.
(Ⅰ)证明:平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:B1F∥平面A1BE;
(Ⅲ)若正方体棱长为1,求四面体A1-B1BE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-2x-4,g(x)=x2+(a2-1)x+(a-2)(a∈R).
(1)当x>2时,求证:f(x)>0;
(2)求证:对任意a∈R,函数g(x)必存在两个零点;
(3)若函数g(x)两个零点均比1小或另一零点比1小,另一个零点比1大,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1,y=f(x)在x=-2时有极值.
(1)求f(x)的表达式;
(2)求f(x)在[-3,1]上的单调区间和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=AlC1=l,AAl=4,BBl=2,CCl=3.
(1)设点O是AB的中点,求直线OC与直线B1C1所成角的大小;
(2)求此几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PCD⊥底面ABCD(1)若M,N分别为PC,BD的中点,求证:MN∥平面PAD;
(2)求证:平面PAD⊥平面PCD;
(3)若PD=CD=$\frac{\sqrt{2}}{2}PC$,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆C:$\frac{x^2}{4}+\frac{y^2}{3}$=1的左、右顶点分别为A1,A2,点P在C上且直线PA2的斜率的取值范围是[-2,-1],那么直线PA1斜率的取值范围是(  )
A.$[{\frac{1}{2},1}]$B.$[{\frac{3}{4},1}]$C.$[{\frac{1}{2},\frac{3}{4}}]$D.$[{\frac{3}{8},\frac{3}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ln(x+$\frac{1}{a}$)-ax,其中a>0.
(1)a=1时,试讨论f(x)的单调性;
(2)若存在实数x1、x2满足-$\frac{1}{a}$<x1<0,x2>0,且f(x1)=f(x2)=0,求证:x1+x2>0.

查看答案和解析>>

同步练习册答案