精英家教网 > 高中数学 > 题目详情
1.如图,是一个几何体的三视图,画出它的直观图,并求出它的体积和表面积.

分析 由三视图可以知道,此几何体是一个四棱台,上底面是矩形,长为10,宽为8;下底面是矩形,长为20,宽为16,高为12,斜高为13,利用面积公式与体积公式求值即可.

解答 解:几何体是一个四棱台,上底面是矩形,长为10,宽为8;下底面是矩形,长为20,宽为16,高为12,斜高为13.
故表面积为10×8+20×16+2×$\frac{1}{2}$×(10+20)×13+2×$\frac{1}{2}$×(8+16)×13=1102,
体积为$\frac{1}{3}×12×(10×8+20×16+\sqrt{10×8×20×16})$=1680.

点评 本题考点是由三视图求面积与体积,本题主要考查根据三视图的作图规则还原实物图的能力,三视图的作图规则是主视图与俯视图长对正,主视图与侧视图高平齐,侧视图与俯视图是宽相等,本题是考查利用三视图的作图规则把三视图中的数据还原到原始图形中来,求面积与体积,做题时要注意正确利用三视图中所提供的信息,正确地得出实物图的长宽高等数据.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是(  )
A.α∥β,m?α,n?β⇒m∥nB.m⊥α,m⊥n⇒n∥α
C.α∩β=m,n∥α,n∥β⇒n∥mD.m?α,n?α,m∥β,n∥β⇒α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知梯形ABCD中,AB∥CD,∠B=$\frac{π}{2}$,DC=2AB=2BC=2$\sqrt{2}$,以直线AD为旋转轴旋转一周得到如图所示的几何体σ.
(1)求几何体σ的表面积;
(2)点M时几何体σ的表面上的动点,当四面体MABD的体积为$\frac{1}{3}$,试判断M点的轨迹是否为2个菱形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示的是根据输入的x值计算y的值的程序框图,若x依次取数列$\left\{{\frac{{{n^2}+5}}{n}}\right\}(n∈{{N}^*})$中的项,则所得y值的最小值为(  )
A.28B.27C.9D.4$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,AB=2,BC=$\sqrt{3}$,若△ABC只有一解,求A的取值范围60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的首项a1=2,前n项的和为Sn且an+1=Sn+2(n∈N*).
(1)证明{an}为等比数列,并求数列{an}的通项公式;
(2)设数列{bn}的通项bn=log2(a1a2…an),试判断$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+\frac{1}{{b}_{3}}+…+\frac{1}{{b}_{n}}$与2的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4,如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连续AB,
(1)求证:DE⊥平面BCD
(2)求三棱锥A-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设z1=m2+1+(m2+m-2)i,z2=4m+2+(m2-5m+4)i,m∈R,若z1<z2,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.四面体共有6条棱.

查看答案和解析>>

同步练习册答案