分析 (1)利用递推式与等比数列的定义通项公式即可证明.
(2)bn=$lo{g}_{2}(2•{2}^{2}•…•{2}^{n})$=$lo{g}_{2}{2}^{\frac{n(n+1)}{2}}$,可得$\frac{1}{{b}_{n}}$=$2(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”即可得出.
解答 (1)证明:∵an+1=Sn+2(n∈N*),
∴当n=1时,a2=a1+2=4,当n≥2时,an=Sn-1+2,an+1-an=an,化为an+1=2an,当n=1时也满足,
∴{an}为等比数列,首项为2,公比为2.
∴${a}_{n}={2}^{n}$.
(2)bn=log2(a1a2…an)=$lo{g}_{2}(2•{2}^{2}•…•{2}^{n})$=$lo{g}_{2}{2}^{\frac{n(n+1)}{2}}$=$\frac{n(n+1)}{2}$,
∴$\frac{1}{{b}_{n}}$=$2(\frac{1}{n}-\frac{1}{n+1})$,
∴$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+\frac{1}{{b}_{3}}+…+\frac{1}{{b}_{n}}$=$2[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$<2.
∴$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+\frac{1}{{b}_{3}}+…+\frac{1}{{b}_{n}}$<2.
点评 本题考查了递推式的应用、等差数列与等比数列的通项公式及其前n项和公式、“裂项求和”方法、不等式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | n=12 | B. | n=24 | ||
| C. | n=36 | D. | n≠12且n≠24且n≠36 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 11 | B. | 5 | C. | -1 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-$\frac{3}{e}$ | B. | 1-$\frac{2}{e}$ | C. | 1-$\frac{1}{e}$ | D. | 1-$\frac{3}{2e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄(岁) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] |
| 频数 | m | n | 14 | 12 | 8 | 6 |
| 知道的人数 | 3 | 4 | 8 | 7 | 3 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com