精英家教网 > 高中数学 > 题目详情
17.已知在数列{an}中,a1=2,an=$\frac{n+1}{n-1}$an-1,求通项公式an

分析 根据数列的递推关系,利用累积法进行求解即可.

解答 解:∵a1=2,an=$\frac{n+1}{n-1}$an-1
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n+1}{n-1}$,
则当n≥3时,
an=a2•$\frac{{a}_{3}}{{a}_{2}}$$•\frac{{a}_{4}}{{a}_{3}}$…$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{3}{1}×2$•$\frac{4}{2}$$•\frac{5}{3}•\frac{6}{4}…$$\frac{n-1}{n-3}$$•\frac{n}{n-2}•\frac{n+1}{n-1}$=n(n+1),
当n=2时,a2=$\frac{3}{1}×2=6$,满足an=n(n+1),
a1=2,满足an=n(n+1),
综上数列的通项公式为an=n(n+1).

点评 本题主要考查数列通项公式的求解,利用累积法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.抛物线x2=-8y的焦点坐标是(  )
A.(0,2)B.(0,-2)C.(0,4)D.(0,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)满足ax•f(x)=b+f(x)(ab≠0),f(1)=2且f(x+2)=-f(2-x)对定义域中任意x都成立.
(1)求函数f(x)的解析式;
(2)若正项数列{an}的前n项和Sn,满足Sn=$\frac{1}{4}$(3-$\frac{2}{f({a}_{n})}$)2,求证:数列{an}为等差数列.
(3)在(2)的条件下,若bn=$\frac{{a}_{n}}{{2}^{n}}$,数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC不是直角三角形,则下列命题正确的是①②④⑤(写出所有正确命题的编号)
①tanA•tanB•tanC=tanA+tanB+tanC;
②若tanA:tanB:tanC=1:2:3,则A=45°;
③tanA+tanB+tanC的最小值为3$\sqrt{3}$;
④当$\sqrt{3}$tanB-1=$\frac{tanB+tanC}{tanA}$时,则sin2C≥sinA•sinB;
⑤若[x]表示不超过x的最大整数,则满足tanA+tanB+tanC≤[tanA]+[tanB]+[tanC]的A,B,C仅有一组.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知梯形ABCD中,AB∥CD,∠B=$\frac{π}{2}$,DC=2AB=2BC=2$\sqrt{2}$,以直线AD为旋转轴旋转一周得到如图所示的几何体σ.
(1)求几何体σ的表面积;
(2)点M时几何体σ的表面上的动点,当四面体MABD的体积为$\frac{1}{3}$,试判断M点的轨迹是否为2个菱形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若(x2+$\frac{3}{x}$)n展开式中的二项式系数之和为64,则展开式的常数项为(  )
A.1215B.9C.27D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示的是根据输入的x值计算y的值的程序框图,若x依次取数列$\left\{{\frac{{{n^2}+5}}{n}}\right\}(n∈{{N}^*})$中的项,则所得y值的最小值为(  )
A.28B.27C.9D.4$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的首项a1=2,前n项的和为Sn且an+1=Sn+2(n∈N*).
(1)证明{an}为等比数列,并求数列{an}的通项公式;
(2)设数列{bn}的通项bn=log2(a1a2…an),试判断$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+\frac{1}{{b}_{3}}+…+\frac{1}{{b}_{n}}$与2的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点F是双曲线$\frac{x{\;}^{2}}{a{\;}^{2}}$-$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,以坐标原点O为圆心,OF为半径的圆与该双曲线左支交于点A、B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是(  )
A.(1,1+$\sqrt{3}$)B.(1,$\sqrt{2}$)C.(1,1+$\sqrt{2}$)D.(2,1+$\sqrt{2}$)

查看答案和解析>>

同步练习册答案