18£®Ä³Ð£Ñ§Éú»á½øÐÐÁËÒ»´Î¹ØÓÚ¡°Ïû·À°²È«¡±µÄµ÷²é»î¶¯£¬×éÖ¯²¿·ÖѧÉú¸É²¿ÔÚ¼¸¸ö´óÐÍÐ¡ÇøËæ»ú³éÈ¡ÁË50Ãû¾ÓÃñ½øÐÐÎʾíµ÷²é£®»î¶¯½áÊøºó£¬ÍÅί»á¶ÔÎʾí½á¹û½øÐÐÁËͳ¼Æ£¬²¢½«ÆäÖС°ÊÇ·ñÖªµÀÃð»ðÆ÷ʹÓ÷½·¨£¨ÖªµÀ»ò²»ÖªµÀ£©¡±µÄµ÷²é½á¹ûͳ¼ÆÈçÏÂ±í£º
ÄêÁ䣨Ë꣩[10£¬20£©[20£¬30£©[30£¬40£©[40£¬50£©[50£¬60£©[60£¬70]
ƵÊýmn141286
ÖªµÀµÄÈËÊý348732
£¨¢ñ£©ÇóÉϱíÖеÄm¡¢nµÄÖµ£¬²¢²¹È«ÓÒͼËùʾµÄƵÂÊÖ±·½Í¼£»
£¨¢ò£©ÔÚ±»µ÷²éµÄ¾ÓÃñÖУ¬Èô´ÓÄêÁäÔÚ[10£¬20£©£¬[20£¬30£©µÄ¾ÓÃñÖи÷Ëæ»úѡȡ1È˲μÓÏû·À֪ʶ½²×ù£¬ÇóÑ¡ÖеÄÁ½ÈËÖнöÓÐÒ»È˲»ÖªµÀÃð»ðÆ÷µÄʹÓ÷½·¨µÄ¸ÅÂÊ£®

·ÖÎö £¨¢ñ£©¿ÉµÃÄêÁäÔÚ[10£¬20£©µÄƵÊýΪ4£®ÄêÁäÔÚ[20£¬30£©µÄƵÊýΪ6£¬¾Ý´Ë¿É²¹È«ÆµÂÊÖ±·½Í¼£»
£¨¢ò£©¼ÇÄêÁäÔÚÇø¼ä[10£¬20£©µÄ¾ÓÃñΪa1£¬A2£¬A3£¬A4£¨ÆäÖоÓÃña1²»ÖªµÀʹÓ÷½·¨£©£»ÄêÁäÔÚÇø¼ä[20£¬30£©µÄ¾ÓÃñΪb1£¬b2£¬B3£¬B4£¬B5£¬B6£¨ÆäÖоÓÃñb1£¬b2²»ÖªµÀʹÓ÷½·¨£©£¬Áоٿɵù²24¸ö»ù±¾Ê¼þ£¬Âú×ãÌâÒâµÄÓÐ10¸ö£¬ÓɸÅÂʹ«Ê½¿ÉµÃ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃÄêÁäÔÚ[10£¬20£©µÄƵÊýΪ4£®ÄêÁäÔÚ[20£¬30£©µÄƵÊýΪ6£®
ƵÂÊÖ±·½Í¼ÈçͼËùʾ£º

£¨¢ò£©¼ÇÄêÁäÔÚÇø¼ä[10£¬20£©µÄ¾ÓÃñΪa1£¬A2£¬A3£¬A4£¨ÆäÖоÓÃña1²»ÖªµÀʹÓ÷½·¨£©£»
ÄêÁäÔÚÇø¼ä[20£¬30£©µÄ¾ÓÃñΪb1£¬b2£¬B3£¬B4£¬B5£¬B6£¨ÆäÖоÓÃñb1£¬b2²»ÖªµÀʹÓ÷½·¨£©£®
ѡȡµÄÁ½È˵ÄÇéÐÎÓУº£¨a1£¬b1£©£¬£¨a1£¬b2£©£¬£¨a1£¬B3£©£¬£¨a1£¬B4£©£¬£¨a1£¬B5£©£¬
£¨a1£¬B6£©£¬£¨A2£¬b1£©£¬£¨A2£¬b2£©£¬£¨A2£¬B3£©£¬£¨A2£¬B4£©£¬£¨A2£¬B5£©£¬£¨A2£¬B6£©£¬
£¨A3£¬b1£©£¬£¨A3£¬b2£©£¬£¨A3£¬B3£©£¬£¨A3£¬B4£©£¬£¨A3£¬B5£©£¬£¨A3£¬B6£©£¬£¨A4£¬b1£©£¬
£¨A4£¬b2£©£¬£¨A4£¬B3£©£¬£¨A4£¬B4£©£¬£¨A4£¬B5£©£¬£¨A4£¬B6£©£¬¹²24¸ö»ù±¾Ê¼þ£¬
ÆäÖнöÓÐÒ»È˲»ÖªµÀÃð»ðÆ÷µÄʹÓ÷½·¨µÄ»ù±¾Ê¼þÓÐ10¸ö£¬
¡àÑ¡ÖеÄÁ½ÈËÖнöÓÐÒ»È˲»ÖªµÀÃð»ðÆ÷µÄʹÓ÷½·¨µÄ¸ÅÂÊ$P=\frac{10}{24}=\frac{5}{12}$

µãÆÀ ±¾Ì⿼²éÁоٷ¨Çó»ù±¾Ê¼þÊý¼°¸ÅÂʹ«Ê½£¬É漰ƵÂÊ·Ö²¼Ö±·½Í¼£¬Êô»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©Âú×ãax•f£¨x£©=b+f£¨x£©£¨ab¡Ù0£©£¬f£¨1£©=2ÇÒf£¨x+2£©=-f£¨2-x£©¶Ô¶¨ÒåÓòÖÐÈÎÒâx¶¼³ÉÁ¢£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÈôÕýÏîÊýÁÐ{an}µÄǰnÏîºÍSn£¬Âú×ãSn=$\frac{1}{4}$£¨3-$\frac{2}{f£¨{a}_{n}£©}$£©2£¬ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ®
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Èôbn=$\frac{{a}_{n}}{{2}^{n}}$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÈçͼËùʾµÄÊǸù¾ÝÊäÈëµÄxÖµ¼ÆËãyµÄÖµµÄ³ÌÐò¿òͼ£¬ÈôxÒÀ´ÎÈ¡ÊýÁÐ$\left\{{\frac{{{n^2}+5}}{n}}\right\}£¨n¡Ê{{N}^*}£©$ÖеÄÏÔòËùµÃyÖµµÄ×îСֵΪ£¨¡¡¡¡£©
A£®28B£®27C£®9D£®4$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÉèÊýÁÐ{an}µÄÊ×Ïîa1=2£¬Ç°nÏîµÄºÍΪSnÇÒan+1=Sn+2£¨n¡ÊN*£©£®
£¨1£©Ö¤Ã÷{an}ΪµÈ±ÈÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{bn}µÄͨÏîbn=log2£¨a1a2¡­an£©£¬ÊÔÅжÏ$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+\frac{1}{{b}_{3}}+¡­+\frac{1}{{b}_{n}}$Óë2µÄ´óС¹ØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ1Ëùʾ£¬ÔÚRt¡÷ABCÖУ¬AC=6£¬BC=3£¬¡ÏABC=90¡ã£¬CDΪ¡ÏACBµÄƽ·ÖÏߣ¬µãEÔÚÏß¶ÎACÉÏ£¬CE=4£¬Èçͼ2Ëùʾ£¬½«¡÷BCDÑØCDÕÛÆð£¬Ê¹µÃÆ½ÃæBCD¡ÍÆ½ÃæACD£¬Á¬ÐøAB£¬
£¨1£©ÇóÖ¤£ºDE¡ÍÆ½ÃæBCD
£¨2£©ÇóÈýÀâ×¶A-BDEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èôcos£¨¦Á+¦Â£©=$\frac{2}{7}$£¬cos£¨¦Á-¦Â£©=$\frac{4}{7}$£¬Ôòtan¦Átan¦Â=$\frac{1}{3}$£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Éèz1=m2+1+£¨m2+m-2£©i£¬z2=4m+2+£¨m2-5m+4£©i£¬m¡ÊR£¬Èôz1£¼z2£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªµãFÊÇË«ÇúÏß$\frac{x{\;}^{2}}{a{\;}^{2}}$-$\frac{y{\;}^{2}}{b{\;}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×󽹵㣬µãEÊǸÃË«ÇúÏßµÄÓÒ¶¥µã£¬ÒÔ×ø±êÔ­µãOΪԲÐÄ£¬OFΪ°ë¾¶µÄÔ²Óë¸ÃË«ÇúÏß×óÖ§½»ÓÚµãA¡¢BÁ½µã£¬Èô¡÷ABEÊÇÈñ½ÇÈý½ÇÐΣ¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊeµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬1+$\sqrt{3}$£©B£®£¨1£¬$\sqrt{2}$£©C£®£¨1£¬1+$\sqrt{2}$£©D£®£¨2£¬1+$\sqrt{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈôµãPÔÚy2=xÉÏ£¬µãQÔÚ£¨x-3£©2+y2=1ÉÏ£¬Ôò|PQ|µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\sqrt{3}$-1B£®$\frac{\sqrt{10}}{2}$-1C£®2D£®$\frac{\sqrt{11}}{2}$-1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸