精英家教网 > 高中数学 > 题目详情
10.设z1=m2+1+(m2+m-2)i,z2=4m+2+(m2-5m+4)i,m∈R,若z1<z2,求实数m的取值范围.

分析 z1=m2+1+(m2+m-2)i,z2=4m+2+(m2-5m+4)i,m∈R,由于z1<z2,可得z1,z2,为实数,可得$\left\{\begin{array}{l}{{m}^{2}+m-2=0}\\{{m}^{2}-5m+4=0}\end{array}\right.$,解得m即可.

解答 解:∵z1=m2+1+(m2+m-2)i,z2=4m+2+(m2-5m+4)i,m∈R,
∵z1<z2
∴z1,z2,为实数,
∴$\left\{\begin{array}{l}{{m}^{2}+m-2=0}\\{{m}^{2}-5m+4=0}\end{array}\right.$,解得m=1.
此时z1=2,z2=6,
满足z1<z2
∴实数m=1.

点评 本题考查了复数为实数的充要条件,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若复数z满足z(1+i)=4-2i(i为虚数单位),则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,是一个几何体的三视图,画出它的直观图,并求出它的体积和表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某校学生会进行了一次关于“消防安全”的调查活动,组织部分学生干部在几个大型小区随机抽取了50名居民进行问卷调查.活动结束后,团委会对问卷结果进行了统计,并将其中“是否知道灭火器使用方法(知道或不知道)”的调查结果统计如下表:
年龄(岁)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]
频数mn141286
知道的人数348732
(Ⅰ)求上表中的m、n的值,并补全右图所示的频率直方图;
(Ⅱ)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取1人参加消防知识讲座,求选中的两人中仅有一人不知道灭火器的使用方法的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设F1、F2为椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1上的两个焦点,P点在椭圆上,若△PF1F2是直角三角形,则△PF1F2的面积为6$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{{x}^{2}}{4-{b}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<2)与x轴交于A、B两点,点C(0,b),则△ABC面积的最大值为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知-$\frac{π}{6}$≤x≤$\frac{π}{3}$,cosx=$\frac{m-1}{m+1}$,则m的取值范围是m<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知y=f(x)是定义在R上的奇函数,且当x>0时不等式f(x)+xf′(x)<0成立,若a=3•f(3),b=ln2•f(ln2),c=2i2•f(2i2)(i为虚数单位),则a、b、c的大小关系是(  )
A.a>c>bB.b>a>cC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过抛物线y2=2Px(P>0)焦点的弦AB斜率为2$\sqrt{2}$,且|AB|=9,则抛物线方程为y2=8x.

查看答案和解析>>

同步练习册答案