精英家教网 > 高中数学 > 题目详情
18.已知($\frac{1}{a}$+ax)5-($\frac{1}{b}$+bx)5的展开式中含x2与x3的项的系数的绝对值之比为1:6,则a2+b2的最小值为(  )
A.6B.9C.12D.18

分析 直接利用($\frac{1}{a}$+ax)5-($\frac{1}{b}$+bx)5的展开式中含x2与x3的项的系数的绝对值之比为1:6,得到ab关系,然后利用基本不等式求解最小值即可.

解答 解:∵($\frac{1}{a}$+ax)5-($\frac{1}{b}$+bx)5的展开式中含x2与x3的项的系数的绝对值之比为1:6,
∴|C52•$\frac{1}{a}$-C52•$\frac{1}{b}$|:|C53•a-C53•b|=1:6,
∴|ab|=6,
∴a2+b2≥2|ab|=12.
故选:C.

点评 本题考查二项式定理的应用,基本不等式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,抛物线C:x2=2py(p>0)的焦点为F(0,1),取垂直于y轴的直线与抛物线交于不同的两点P1,P2.过P1,P2作圆心为Q的圆,使抛物线的其余点均在圆外,且P1Q⊥P2Q.
(1)求抛物线C和圆Q的方程;
(2)过点F作直线,与抛物线C和圆Q依次交于M,A,B,N,求|MN|•|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.7名同学排队照相.
(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?
(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?
(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?
(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\frac{cosx}{cos(\frac{π}{2}+\frac{π}{4})}$的值域为[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一个距地心距离为r,质量为m的人造卫星,与地球之间的万有引力F由公式F=$\frac{GMm}{{r}^{2}}$给出,其中M为地球质量,G为常量,求F对于r的瞬时变化率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.确定下列三角函数值的符号:
(1)sin186°;(2)tan505°;(3)sin7.6π;
(4)tan(-$\frac{23π}{4}$);(5)cos940°;(6)cos(-$\frac{59π}{17}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.与2011°角的终边相同的最小正角是211°,绝对值最小的角是-169°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{a}^{x}+b,x≤0}\end{array}\right.$,且f(0)=2,f(-1)=3,则f(f(-3))=(  )
A.-2B.2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合A={1,2,3},B={2,3},则A∪B=(  )
A.{2}B.{2.5}C.{1,2,3}D.{1,2,3,5}

查看答案和解析>>

同步练习册答案