精英家教网 > 高中数学 > 题目详情
17.圆(x-1)2+(y-2)2=1上的动点P到直线3x-4y-10=0的距离的最小值为(  )
A.2B.1C.3D.4

分析 利用点到直线的距离公式求出圆心(1,2)到直线l的距离d和半径,则d减去半径即为所求.

解答 解:圆心(1,2)到直线l的距离为d=$\frac{|3×1-4×2-10|}{\sqrt{{3}^{2}+(-4)^{2}}}$=3,而圆的半径为1,
故点P到直线l的距离的最小值为3-1=2
故选:A

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,分数在80以上(含80)的同学获奖,按文理科用分层抽样的方法共抽取200人的成绩作为样本,得到成绩的2×2列联表.
(1)填写下面的2×2列联表,问能否有超过95%的把握认为“获奖与学生的文理科有关”?
(2)将上述调查所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.
文科生理科生合计
获奖5
不获奖115
合计200
附表及公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.150.100.050.0250.0100.0050.001
K02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设A为某圆周上一定点,在圆周上任取一点P,则弦长|AP|超过半径的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{π}$D.1-$\frac{1}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了得到函数y=$\sqrt{3}$sin3x+cos3x的图象,可以将函数y=2sin3x的图象(  )
A.向右平移$\frac{π}{6}$个单位B.向左平移$\frac{π}{6}$个单位
C.向右平移$\frac{π}{18}$个单位D.向左平移$\frac{π}{18}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.sin20°sin80°-cos160°sin10°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.与直线x-2y+6=0平行且过点(0,-1)的直线方程为(  )
A.2x+y+1=0B.x+2y+2=0C.x-2y-2=0D.2x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,输出的S值为(  )
A.$\frac{1}{4}$B.$\frac{3}{10}$C.$\frac{1}{3}$D.$\frac{5}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在平行四边形ABCD中,E为BC的中点,F为DC的中点,若$\overrightarrow{AC}$=$λ\overrightarrow{AE}$+$μ\overrightarrow{BF}$,则λ+μ的值为(  )
A.$\frac{4}{5}$B.1C.$\frac{8}{5}$D.2

查看答案和解析>>

同步练习册答案