精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\frac{x}{{e}^{x}}$(x∈R),若x1≠x2,且f(x1)=f(x2),则x1,2-x2大小关系是大于.

分析 首先利用导数研究出函数的单调性和极值,然后利用构造函数的方法进行判断.

解答 解:f′(x)=(1-x)e-x,令f′(x)=0,得x=1,当x<1时f′(x)>0,当x>1时f′(x)<0,

所以当x<1时函数f(x)单调递增,当x>1时函数f(x)单调递减,函数f(x)的极大值是f(1)=$\frac{1}{e}$.
令g(x)=f(2-x),得g(x)=(2-x)ex-2,令F(x)=f(x)-g(x),即F(x)=xex+(x-2)ex-2,于是F′(x)=(x-1)(e2x-2-1)e-x
当x>1时,2x-2>0,从而F′(x)>0,从而函数F(x)在[1,+∞)是增函数,
所以F(x)>F(1)=0,即f(x)>g(x),即在[1,+∞)上f(x)>g(x).
若(x1-1)(x2-1)=0 所以x1=x2=1不合题意,舍去;若(x1-1)(x2-1)>0,又因为f(x1)=f(x2),所以x1=x2=1,不合题意,舍去;所以(x1-1)(x2-1)<0,不妨设x1<1<x2,因为f(x)>g(x),
所以f(x2)>f(2-x2),又因为f(x1)=f(x2),所以f(x1)>f(2-x2),因为x2>1,所以2-x2<1,由函数f(x)在区间(-∞,1)内是增函数,所以x1>2-x2

点评 本题重点考查导数的应用,以及构造函数的思想,进行证明不等关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.16B.(10+$\sqrt{5}$)πC.4+(5+$\sqrt{5})π$πD.6+(5+$\sqrt{5})$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合Mn={n∈N*|S=$\sum_{i=1}^{n}$|i2n-1…i2n|)(其中i1,i2,…,i2n为1,2,…,2n的一个排列),记集合Mn中的元素个数为${d}_{{M}_{n}}$,例如,当n=1时,M1={1},${d}_{{M}_{1}}$=1,当n=2时,M2={2,4},${d}_{{M}_{2}}$=2;当n=3时,M3={3,5,7,9},${d}_{{M}_{3}}$=4.
(1)M4={4,6,8,10,12,14,16};
(2)归纳可得${d}_{{M}_{n}}$=$\frac{{n}^{2}-n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图是一个几何体的三视图,根据图中数据,求该几何体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求数列$\frac{1}{1×4}$,$\frac{1}{4×7}$,$\frac{1}{7×10}$,…,$\frac{1}{(3n-2)(3n+1)}$,…的前10项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若某几何体的三视图如图所示,则该几何体的体积是20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.证明:xln(x+$\sqrt{1+{x}^{2}}$)>$\sqrt{1+{x}^{2}}$-1(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若△ABC的内角A、B、C所对的边分别为a,b,c.
(1)若cos2A=sin2B+cos2C+sinAsinB,求角C的大小;
(2)若a,b,c成等差数列,求角B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用长为18m的钢条围成一个长方体的框架,已知长方体的长与宽之比为2:1.
(1)记长方体的宽为xm,请写出长方体的高h关于x的表达式;
(2)当该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

查看答案和解析>>

同步练习册答案