精英家教网 > 高中数学 > 题目详情
已知F1,F2为椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,过F2做椭圆的弦AB,若△AF1B 的周长是16,椭圆的离心率e=
3
2

(1)求椭圆的标准方程;       
(2)若∠F1AF2=90°,求△F1AF的面积S;
(3)已知P(2,1)是椭圆内一点,在椭圆上求一点Q,使得
3
PQ+2QF2最小,并求出最小值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知条件得
4a=16
e=
c
a
=
3
2
a2=b2+c2
,由此能求出椭圆的标准方程.
(2)由∠F1AF2=90°,知SF1AF2=b2tan90°,由此能求出结果.
(3)过P作右准线的垂线,与椭圆的交点为Q,此时PQ+2QF2有最小值.
解答: 解:(1)∵F1,F2为椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,
过F2做椭圆的弦AB,△AF1B 的周长是16,椭圆的离心率e=
3
2

4a=16
e=
c
a
=
3
2
a2=b2+c2
,解得a=4,c=2
3
,b=2,
∴椭圆的标准方程为
x2
16
+
y2
4
=1

(2)∵∠F1AF2=90°,
SF1AF2=b2tan90°=4.
(3)∵P(2,1)是椭圆内一点,
∴过P作右准线的垂线,与椭圆的交点为Q,此时PQ+2QF2有最小值.
∴Q(xQ,1)xQ>0,代入
x2
16
+
y2
4
=1
,得xQ=3,∴Q(3,1).
P到右准线的距离d=
16
2
3
-2
=
8
3
-2

QF2
8
3
-2
=
3
2

∴2QF2=8-2
3

∴PQ+2QF2的最小值为:1+8-2
3
=9-2
3

即当Q(3,1)时,PQ+2QF2有最小值,最小值为9-2
3
点评:本题考查椭圆方程的求法,考查三角形面积的求法,考查线段和最小值的求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式(x-2)(x+5)>0的解集为(  )
A、{x|-5<x<2}
B、{x|x<-2或x>5}
C、{x|-2<x<5}
D、{x|x<-5或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆M与直线y=3相切,且与定圆C:x2+(y+3)2=1外切,求动圆圆心M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点恰与抛物线y2=4
3
x的焦点重合,椭圆上任意一点到两焦点的距离之和为4.圆C2以坐标原点为圆心,C1的长轴为直径(如图).C是椭圆短轴端点,动直线AB过点C且与圆C2交于AB两点,D为椭圆上的点且满足
CD
AB
=0.
(1)求椭圆C1的方程;
(2)求△ABD面积的最大值,并求此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:“方程
x2
2-a
+
y2
3
=1所表示的曲线为焦点在x轴上的椭圆”;命题Q:“?x∈R,x2+2ax+2-a=0”; 如果“P或Q”为真,“P且Q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+
π
12
).
(1)求f(-
π
4
)的值;
(2)若cosθ=
4
5
,θ∈(0,
π
2
),求f(2θ-
π
3
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公比为q的等比数列{an}的前6项和为S6=21,且2a1
3
2
a2,a3成等差数列.
(1)求数列{an}的通项公式;
(2)设{bn}是首项为2,公差为-a1的等差数列,其前n项和为Tn,求不等式Tn-bn>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

4名男同学和3名女同学站成一排照相,计算下列情况各有多少种不同的站法?
(1)男生甲必须站在两端;
(2)两名女生乙和丙不相邻;
(3)女生乙不站在两端,且女生丙不站在正中间.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列三个命题:
①若△ABC三边为a,b,c,面积为S,内切圆的半径r=
2S
a+b+c
,则由类比推理知四面体ABCD的内切球半径R=
3V
S1+S2+S3+S4
(其中,V为四面体的体积,为S1,S2,S3,S4四个面的面积);
②若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是
y
=1.23x+0.08;
③用相关系数r来刻画回归效果,r2越小,说明模型的拟合效果越好.
其中,正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案