精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+3ax,x<0\\ 2{e^x}-{x^2}+2ax,x>0\end{array}\right.$,其中a为实数.
(1)若函数y=f(x)在x=1处取得极值,求a的值;
(2)若函数y=f(x)的图象上存在两点关于原点对称,求a的取值范围.

分析 (1)求出函数的导数,根据f′(1)=0,求出a的值,检验即可;
(2)结合题意得到$a=\frac{{2{e^{x_0}}}}{x_0}$,x0>0.设$g(x)=\frac{{2{e^x}}}{x}$,x>0,根据函数的单调性求出a的范围即可.

解答 解:(1)x>0时,f'(x)=2ex-2x+2a,
依题意有f'(1)=2(e-1+a)=0,得a=1-e,
经验证,0<x<1时,f'(x)=2(ex-x+1-e)<0,
x>1时,f'(x)>0,满足极值要求.
(2)依题意,设存在f(x)=2ex-x2+2ax(x>0)图象上一点(x0,y0),
使得(-x0,-y0)在f(x)=x2+3ax(x<0)的图象上,
则有$\left\{\begin{array}{l}{y_0}=2{e^{x_0}}-x_0^2+2a{x_0},\;\;\\-{y_0}={(-{x_0})^2}+3a(-{x_0}),\;\;\end{array}\right.$
得$2{e^{x_0}}-x_0^2+2a{x_0}=-x_0^2+3a{x_0}$,
化简得:$a=\frac{{2{e^{x_0}}}}{x_0}$,x0>0.
设$g(x)=\frac{{2{e^x}}}{x}$,x>0,则$g'(x)=\frac{{2{e^x}}}{x^2}(x-1)$,
当0<x<1时,g'(x)<0,当x>1时,g'(x)>0,
则g(x)在(0,1)上为减函数,在(1,+∞)上为增函数,
g(x)min=g(1)=2e,
又x→0或x→+∞时,g(x)→+∞,∴g(x)∈[2e,+∞).
所以,a≥2e时,函数y=f(x)的图象上存在两点关于原点对称.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图,小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为(  )
A.8$\sqrt{3}$B.$\frac{80}{3}$C.16$\sqrt{3}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设X是一个离散型随机变量,则下列不能成为X的概率分布列的一组数据是(  )
A.0,$\frac{1}{2}$,0,0,$\frac{1}{2}$B.0.1,0.2,0.3,0.4
C.p,1-p(0≤p≤1)D.$\frac{1}{1×2}$,$\frac{1}{2×3}$,…,$\frac{1}{7×8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图为体积是3的几何体的三视图,则正视图的x值是(  )
A.2B.$\frac{9}{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知α,β是两个不同的平面,m,n是两条不同的直线,有下列命题:
①若m,n平行于同一平面,则m与n平行;
②若m⊥α,n∥α,则m⊥n;
③若α,β不平行,则在α内不存在与β平行的直线;
④若α∩β=n,m∥n,则m∥α且m∥β;
⑤若m∥n,α∥β,则m与α所成角等于n与β所成角.
其中真命题有②⑤.(填写所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:将函数$f(x)=2sin({2x+\frac{π}{3}})$的图象向右平移$\frac{π}{4}$个单位,得到函数g(x)的图象,则函数g(x)在区间$[{-\frac{π}{3},0}]$上单调递增;命题q:定义在R上的函数y=f(x)满足f(-x)=f(3+x),则函数图象关于直线$x=\frac{3}{2}$对称,则正确的命题是(  )
A.p∧qB.p∧(?q)C.(?p)∧(?q)D.(?p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=xlnx-x+\frac{1}{2}{x^2}-\frac{1}{3}a{x^3}$,令f(x)的导函数为y=g(x).
(I)判定y=g(x)在其定义域内的单调性;
(II)若曲线y=f(x)上存在两条倾斜角为锐角且互相平行的切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知B、C为单位圆上不重合的两定点,A为此单位圆上的动点,若点P满足$\overrightarrow{AP}=\overrightarrow{PB}+\overrightarrow{PC}$,则点P的轨迹为(  )
A.椭圆B.双曲线C.抛物线D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=2lnx+x2-2ax(a>0).
(Ⅰ)若函数f(x)在区间[1,2]上的最小值为0,求实数a的值;
(Ⅱ)若x1,x2(x1<x2)是函数f(x)的两个极值点,且f(x1)-f(x2)>m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案