精英家教网 > 高中数学 > 题目详情
7.设X是一个离散型随机变量,则下列不能成为X的概率分布列的一组数据是(  )
A.0,$\frac{1}{2}$,0,0,$\frac{1}{2}$B.0.1,0.2,0.3,0.4
C.p,1-p(0≤p≤1)D.$\frac{1}{1×2}$,$\frac{1}{2×3}$,…,$\frac{1}{7×8}$

分析 根据离散型随机变量的概率分布列中,概率和为1,判断D错误.

解答 解:根据离散型随机变量的概率分布列中,概率和为1,
对于A,0+$\frac{1}{2}$+0+0+$\frac{1}{2}$=1,满足题意;
对于B,0.1+0.2+0.3+0.4=1,满足题意;
对于C,p+(1-p)=1,满足题意;
对于D,$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{7×8}$
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{7}$-$\frac{1}{8}$
=1-$\frac{1}{8}$
=$\frac{7}{8}$≠1,不满足条件.
故选:D.

点评 本题考查了离散型随机变量的分布列应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{{e}^{x}}{x}$-a(x-lnx).
(1)当a=1时,试求f(x)在(1,f(1))处的切线方程;
(2)当a≤0时,试求f(x)的单调区间;
(3)若f(x)在(0,1)内有极值,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知${({1-2x})^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,则|a0|+|a1|+|a2|+…+|a7|=2187.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:
月平均气温x(℃)171382
月销售量y(件)34435065
(1)算出线性回归方程$\stackrel{∧}{y}$=bx+a; (a,b精确到十分位)
(2)气象部门预测下个月的平均气温约为3℃,据此估计,求该商场下个月毛衣的销售量.
(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x1=4,x2=5,x3=6,则该样本的标准差为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{7}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若实数x,y满足条件$\left\{\begin{array}{l}x-1≤0\\ x-y≥-1\\ 2x+y≥2\end{array}\right.$,则$z=-\frac{3}{4x+3y}$的最大值为(  )
A.$-\frac{9}{16}$B.$-\frac{3}{4}$C.$-\frac{3}{10}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=x+sinx在$x=\frac{π}{2}$处的切线与两坐标轴围成的三角形面积为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+3ax,x<0\\ 2{e^x}-{x^2}+2ax,x>0\end{array}\right.$,其中a为实数.
(1)若函数y=f(x)在x=1处取得极值,求a的值;
(2)若函数y=f(x)的图象上存在两点关于原点对称,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=$\frac{2{x}^{2}}{x+1}$,g(x)=ax+5-2a(a>0),若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则a的取值范围是(  )
A.[4,+∞)B.(0,$\frac{5}{2}$]C.[$\frac{5}{2}$,4]D.[$\frac{5}{2}$,+∞)

查看答案和解析>>

同步练习册答案