精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\frac{{e}^{x}}{x}$-a(x-lnx).
(1)当a=1时,试求f(x)在(1,f(1))处的切线方程;
(2)当a≤0时,试求f(x)的单调区间;
(3)若f(x)在(0,1)内有极值,试求a的取值范围.

分析 (1)求导,利用导数的几何意义求解;
(2)求导,研究导函数的取值情况即可求解;
(3)问题等价于f′(x)=0在x∈(0,1)内有解,求导后分析其取值情况即可.

解答 解:(1)当a=1时,f(x)=$\frac{{e}^{x}}{x}$-(x-lnx),f(1)=e-1,
求导,f′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$-1+$\frac{1}{x}$,则f′(1)=0,
∴切线方程为y=e-1.
(2)求导,f′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$-a(1-$\frac{1}{x}$)=$\frac{({e}^{x}-ax)(x-1)}{{x}^{2}}$,
当a≤0时,对于?x∈(0,+∞),ex-ax>0恒成立,
∴f′(x)>0,x>1;
f′(x)<0,0<x<1,
∴单调增区间为(1,+∞),单调减区间为(0,1);
(3)若f(x)在(0,1)内有极值,则f′(x)=0在x∈(0,1)内有解,
令f′(x)=$\frac{({e}^{x}-ax)(x-1)}{{x}^{2}}$,ex-ax=0,a=$\frac{{e}^{x}}{x}$,
设g(x)=$\frac{{e}^{x}}{x}$,x∈(0,1),则g′(x)=$\frac{{e}^{x}(x-1)}{x}$,当x∈(0,1)时,g′(x)<0恒成立,
g(x)单调递减,又g(1)=e,
又当x→0时,g(x)→∞,即g(x)在∈(0,1)上的值域为(e,+∞),
∴当a>e时,f′(x)=$\frac{({e}^{x}-ax)(x-1)}{{x}^{2}}$=0,
设H(x)=ex-ax,则H′(x)=ex-a,x∈(0,1),
∴H(x)在x∈(0,1)单调递减,
由H(0)=1>0,H(1)=e-a<0,
∴H(0)=0,在x∈(0,1),有唯一解x0

 x (0,x0 x0 (x0,1)
 H(x)+ 0-
 f′(x)- 0+
  f(x) 极小值
∴当a>e时,f(x)在(0,1)内有极值且唯一,当a≤e时,当x∈(0,1),时,f′(x)≥0恒成立,f(x)单调递增,不成立,
综上,a的取值范围为(e,+∞).

点评 本题考查导数的综合应用,考查利用导数求函数的单调性及极值,考查分类讨论思想及转化思想的应用,考查分析问题及解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若实数x,y满足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=3x-y,则z的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=3x+$\frac{12}{x^2}$(x>0)取得最小值时x为(  )
A.8B.9C.2D.6$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=x3-3ax2+(2a+1)x既有极小值又有极大值,则a的取值范围为(  )
A.-$\frac{1}{3}$<a<1B.a>1或a$<-\frac{1}{3}$C.-1$<a<\frac{1}{3}$D.a$>\frac{1}{3}$或a<-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列各函数的导数:
(1)y=2x;         
(2)$y=x\sqrt{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$f(k)=sin\frac{kπ}{4}$,k∈Z.
(1)求证:f(1)+f(2)+…+f(8)=f(9)+f(10)+…+f(16);
(2)求f(1)+f(2)+…+f(2020)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.极坐标系的极点为直角坐标系xoy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=4(cosθ+sinθ).
(Ⅰ)求C的直角坐标方程;
(Ⅱ)直线l:$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$为参数)与曲线C交于A,B两点,定点E(0,1),求|EA|•|EB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为(  )
A.8$\sqrt{3}$B.$\frac{80}{3}$C.16$\sqrt{3}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设X是一个离散型随机变量,则下列不能成为X的概率分布列的一组数据是(  )
A.0,$\frac{1}{2}$,0,0,$\frac{1}{2}$B.0.1,0.2,0.3,0.4
C.p,1-p(0≤p≤1)D.$\frac{1}{1×2}$,$\frac{1}{2×3}$,…,$\frac{1}{7×8}$

查看答案和解析>>

同步练习册答案