精英家教网 > 高中数学 > 题目详情
8.函数f(x)=3x+$\frac{12}{x^2}$(x>0)取得最小值时x为(  )
A.8B.9C.2D.6$\sqrt{6}$

分析 根据题意,函数f(x)变形可得:f(x)=$\frac{3x}{2}$+$\frac{3x}{2}$+$\frac{12}{{x}^{2}}$,由基本不等式的性质分析可得且仅当$\frac{3x}{2}$=$\frac{3x}{2}$=$\frac{12}{{x}^{2}}$时,f(x)取得最小值,计算可得答案.

解答 解:根据题意,f(x)=3x+$\frac{12}{x^2}$=$\frac{3x}{2}$+$\frac{3x}{2}$+$\frac{12}{{x}^{2}}$,
又由x>0,f(x)=$\frac{3x}{2}$+$\frac{3x}{2}$+$\frac{12}{{x}^{2}}$≥3$\root{3}{\frac{3x}{2}•\frac{3x}{2}•\frac{12}{{x}^{2}}}$=9,
当且仅当$\frac{3x}{2}$=$\frac{3x}{2}$=$\frac{12}{{x}^{2}}$时等号成立,即x=2时等号成立,
故选:C.

点评 本题考查基本不等式的性质,关键是对f(x)的形式变形,配凑基本不等式的应用条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知双曲线Γ1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,椭圆Γ2:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{6}$=1的离心率为e,直线MN过F2与双曲线交于M,N两点,若cos∠F1MN=cos∠F1F2M,$\frac{|{F}_{1}M|}{|{F}_{1}N|}$=e,则双曲线Γ1的两条渐近线的倾斜角分别为(  )
A.30°或150°B.45°或135°C.60°或120°D.15°或165°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列四个命题:
①若△ABC的面积为$\frac{\sqrt{3}}{2}$,c=2,A=60°,则a的值为$\sqrt{3}$;
②等差数列{an}中,a1=2,a1,a3,a4成等比数列,则公差为-$\frac{1}{2}$;
③已知a>0,b>0,a+b=1,则$\frac{2}{a}$+$\frac{3}{b}$的最小值为5+2$\sqrt{6}$;
④在△ABC中,若sin2A<sin2B+sin2C,则△ABC为锐角三角形.
其中正确命题的序号是①③  .(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若变量x,y满足$\left\{\begin{array}{l}x-y+1≤0\\ x+y-5≤0\\ x≥0\end{array}\right.$,则点P(x,y)表示的区域的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(tanx)=sin2x-sinx•cosx,则f(2)=(  )
A.2B.-2C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}中,a1=2,an+1=an+ln(1+$\frac{1}{n}$),则an=(  )
A.2+lnnB.2+(n-1)lnnC.lnn-2D.1+n+lnn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过C上一点$({2\sqrt{2},\sqrt{2}})$的切线l的方程为x+2y-4$\sqrt{2}$=0.
(1)求椭圆C的方程.
(2)设过点M(0,1)且斜率不为0的直线交椭圆于A,B两点,试问y轴上是否存在点P,使得$\overrightarrow{PM}=λ(\frac{{\overrightarrow{PA}}}{{|{\overrightarrow{PA}}|}}+\frac{{\overrightarrow{PB}}}{{|{\overrightarrow{PB}}|}})$?若存在,求出点P的坐标;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{{e}^{x}}{x}$-a(x-lnx).
(1)当a=1时,试求f(x)在(1,f(1))处的切线方程;
(2)当a≤0时,试求f(x)的单调区间;
(3)若f(x)在(0,1)内有极值,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知${({1-2x})^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,则|a0|+|a1|+|a2|+…+|a7|=2187.

查看答案和解析>>

同步练习册答案