分析 (Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;
(Ⅱ)问题转化为y=g(x)在(0,+∞)有两个零点,当a≤0时,不合题意,a>0时,令h(x)=2lnx+x-1,根据函数的单调性求出a的范围即可.
解答 解:(I)g(x)=lnx+x-ax2(x>0),$g′(x)=\frac{1}{x}+1-2ax=-\frac{{2a{x^2}-x-1}}{x}$,
当a≤0时,g′(x)>0,y=g(x)在(0,+∞)上递增;
当a>0时,由g′(x)=0,
得2ax2-x-1=0得${x_1}=\frac{{1-\sqrt{1+8a}}}{4a}$,${x_2}=\frac{{1+\sqrt{1+8a}}}{4a}$且x1<0,x2>0,
在(0,x2)上g′(x)>0,g(x)递增,在(x2,+∞)上g′(x)<0,g(x)递减.
(II)为使曲线y=f(x)上存在两条倾斜角为锐角且互相平行的切线,
则y=g(x)在(0,+∞)有两个零点,
当a≤0时,y=g(x)在(0,+∞)上递增,不合题意,
∴a>0则g(x2)>0,即$ln{x_2}+{x_2}-ax_2^2>0$,
又$2ax_2^2-{x_2}-1=0$,得$ax_2^2=\frac{{{x_2}+1}}{2}$,∴$ln{x_2}+{x_2}-\frac{{{x_2}+1}}{2}>0$,∴2lnx2+x2-1>0,
令h(x)=2lnx+x-1,$h′(x)=\frac{2}{x}+1>0$,h(x)为增函数,又h(1)=0,
∴x2>1,$2a=\frac{{{x_2}+1}}{x_2^2}=\frac{1}{x_2^2}+\frac{1}{x_2}={({\frac{1}{x_2^2}+\frac{1}{2}})^2}-\frac{1}{4}$,
∵$0<\frac{1}{x_2^2}<1$,∴0<2a<2,∴0<a<1,
此时$g({\frac{1}{e}})=\frac{{-{e^2}+e-{a^2}}}{e^2}<0$,
令r(x)=lnx-(x-1)得$r′(x)=\frac{1}{x}-1=\frac{1-x}{x}$,
当x∈(1,+∞)时r′(x)<0,r(x)递减,r(x)=lnx-(x-1)<r(1)=0⇒lnx<x-1,
g(x)=lnx+x-ax2<2x-ax2-1<2x-ax2,
必存在x∈(x2,+∞)使g(x)<0,y=g(x)在(0,+∞)有两个零点,
综上0<a<1.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 空气质量指数X | X<150 | 150≤X<350 | 350≤X<450 | X≥450 |
| 暂停工程队数Y | 0 | 2 | 6 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 丁酉年 | B. | 戊未年 | C. | 乙未年 | D. | 丁未年 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [4,+∞) | B. | (0,$\frac{5}{2}$] | C. | [$\frac{5}{2}$,4] | D. | [$\frac{5}{2}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com