精英家教网 > 高中数学 > 题目详情
18.曲线y=eaxcosx在x=0处的切线与直线x+2y=0垂直,则a=(  )
A.-2B.-1C.1D.2

分析 根据导数的几何意义求出函数f(x)在x=0处的导数,从而求出切线的斜率,再根据两直线垂直建立等式关系,解之即可.

解答 解:∵y=eaxcosx,∴y′=(acosx-sinx)eax
∴曲线y=eaxcosx在x=0处的斜率为a,
∵曲线y=eaxcosx在x=0处的切线与直线x+2y=0垂直,
∴-$\frac{1}{2}$a=-1,即a=2.
故选:D.

点评 本题主要考查了利用导数研究曲线上某点切线方程,以及两直线垂直的应用等有关问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=xlnx-x+\frac{1}{2}{x^2}-\frac{1}{3}a{x^3}$,令f(x)的导函数为y=g(x).
(I)判定y=g(x)在其定义域内的单调性;
(II)若曲线y=f(x)上存在两条倾斜角为锐角且互相平行的切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.等腰△ABC的底边$AB=6\sqrt{6}$,高CD=3,点E是线段BD上异于点B,D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.
(Ⅰ)证明EF⊥平面PAE;
(Ⅱ)记BE=x,V(x)表示四棱锥P-ACFE的体积,求V(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=2lnx+x2-2ax(a>0).
(Ⅰ)若函数f(x)在区间[1,2]上的最小值为0,求实数a的值;
(Ⅱ)若x1,x2(x1<x2)是函数f(x)的两个极值点,且f(x1)-f(x2)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x,y是实数,i是虚数单位,$\frac{x}{1+i}=1-yi$,则复数x+yi在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=ex-ax2-2x-1,若曲线y=f(x)在点(1,f(1))处的切线为l,且l在y轴上的截距为-2,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z1,z2在复平面内对应的点关于直线y=x对称,z1=1+2i,则$\frac{z_1}{z_2}$=(  )
A.$\frac{3}{5}-\frac{4}{5}i$B.$\frac{3}{5}+\frac{4}{5}i$C.$\frac{4}{5}-\frac{3}{5}i$D.$\frac{4}{5}+\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线3x-4y-6=0与圆x2+y2-2y+m=0(m∈R)相切,则m的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设[x]表示不超过x的最大整数,如[4.3]=4,[-4,3]=-5.化简:$\frac{1}{[\sqrt{1×2}]×[\sqrt{2×3}]×[\sqrt{3×4}]}$+$\frac{1}{[\sqrt{2×3}]×[\sqrt{3×4}]×[\sqrt{4×5}]}$+…+$\frac{1}{[\sqrt{n×(n+1)}]×[\sqrt{(n+1)×(n+2)}]×[\sqrt{(n+2)×(n+3)}]}$(结果用n表示,其中n是大于0的整数).

查看答案和解析>>

同步练习册答案