精英家教网 > 高中数学 > 题目详情
1.已知命题p:将函数$f(x)=2sin({2x+\frac{π}{3}})$的图象向右平移$\frac{π}{4}$个单位,得到函数g(x)的图象,则函数g(x)在区间$[{-\frac{π}{3},0}]$上单调递增;命题q:定义在R上的函数y=f(x)满足f(-x)=f(3+x),则函数图象关于直线$x=\frac{3}{2}$对称,则正确的命题是(  )
A.p∧qB.p∧(?q)C.(?p)∧(?q)D.(?p)∧q

分析 分别判断出p,q的真假,从而判断出复合命题的真假即可.

解答 解:将f(x)的图象向右平移$\frac{π}{4}$个单位,得到函数g(x)的图象,
所以 g(x)=f(x-$\frac{π}{4}$)=2sin[2(x-$\frac{π}{4}$)+$\frac{π}{3}$]=2sin(2x-$\frac{π}{6}$),
由-$\frac{π}{2}$<2x-$\frac{π}{6}$<$\frac{π}{2}$,解得:-$\frac{π}{6}$<x<$\frac{π}{3}$,
故g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]递增,
故命题p是假命题;
令x=x-$\frac{3}{2}$,则f(-x)=f(-x+$\frac{3}{2}$)=f(x+$\frac{3}{2}$),
故f(x)的对称轴是x=$\frac{3}{2}$,
故命题q是真命题;
故(¬p)∧q正确,
故选:D.

点评 本题考查了复合命题的判断,考查三角函数的性质以及抽象函数的对称性,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.复数z=$\frac{{m}^{2}+m-6}{m}$+(m2-2m)i为纯虚数,m=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若实数x,y满足条件$\left\{\begin{array}{l}x-1≤0\\ x-y≥-1\\ 2x+y≥2\end{array}\right.$,则$z=-\frac{3}{4x+3y}$的最大值为(  )
A.$-\frac{9}{16}$B.$-\frac{3}{4}$C.$-\frac{3}{10}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.贵阳一中第110周年校庆于2016年9月30日在校举行,校庆期间从贵阳一中高一年级的2名志愿者和高二年级的4名志愿者中随机抽取2人到一号门搞接待老校友的服务,至少有一名是高一年级志愿者的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+3ax,x<0\\ 2{e^x}-{x^2}+2ax,x>0\end{array}\right.$,其中a为实数.
(1)若函数y=f(x)在x=1处取得极值,求a的值;
(2)若函数y=f(x)的图象上存在两点关于原点对称,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知四棱锥S-ABCD中,底面是直角梯形,AB=2,BC=CD=1,BC⊥AB,侧面SAD是以∠ASD为直角的等腰三角形,且侧面SAD与底面ABCD垂直.
(I)求证:SA⊥BD;
(II)若点E为侧棱SB上的一动点,问点E在何位置时,二面角E-AD-S的余弦值为$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某市有10个施工队,施工期间由于雾霾的影响要对10个工程队采取暂停施工的措施,根据以往经验,空气质量指数X(AQI)与暂停施工队数Y之间有如下关系:
 空气质量指数X X<150 150≤X<350 350≤X<450 X≥450
 暂停工程队数Y 0 2 6 10
历年气象资料表明,工程施工期间空气质量指数X小于150,350,450的概率分别为0.3,0.7,0.9.
(1)求暂停工程队数Y的均值和方差;
(2)在空气质量指数X至少是150的条件下,求暂停工程队数不超过6个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点E是正方体ABCD-A1B1C1D1的体对角线BD1上靠近点B的四等分点,在正方体内随机取一点M,则点M满足MD1≥2ME的概率为$\frac{\sqrt{3}π}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知不等式|x-2|<|x|的解集为($\frac{m}{2}$,+∞)
(1)求实数m的值
(2)若不等式a-5<|x+1|-|x-m|<a+2对x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案