精英家教网 > 高中数学 > 题目详情
6.已知四棱锥S-ABCD中,底面是直角梯形,AB=2,BC=CD=1,BC⊥AB,侧面SAD是以∠ASD为直角的等腰三角形,且侧面SAD与底面ABCD垂直.
(I)求证:SA⊥BD;
(II)若点E为侧棱SB上的一动点,问点E在何位置时,二面角E-AD-S的余弦值为$\frac{{\sqrt{5}}}{5}$.

分析 (Ⅰ)由已知可得AD⊥DB,再由面面垂直的性质可得BD⊥平面SAD,进一步得到SA⊥BD;
(Ⅱ)过D点在平面SAD内作AD的垂线,可得该垂线与底面ABCD垂直,以这条垂线为z轴,DA、DB分别为x轴和y轴,建立空间直角坐标系.求出所用点的坐标,设$\overrightarrow{SE}=λ\overrightarrow{SB}$,把E的坐标用含有λ的代数式表示,再由二面角E-AD-S的余弦值为$\frac{{\sqrt{5}}}{5}$求得λ值得答案.

解答 (Ⅰ)证明:连接BD,则$AD=BD=\sqrt{2}$,又AB=2,∴AD⊥BD,
又侧面SAD⊥底面ABCD,平面SAD∩平面面ABCD=AD,∴BD⊥平面SAD,
∵SA?平面SAD,∴SA⊥BD;
(Ⅱ)解:过D点在平面SAD内作AD的垂线,∵侧面SAD垂直底面ABCD,∴该垂线与底面ABCD垂直,
以这条垂线为z轴,DA、DB分别为x轴和y轴,建立空间直角坐标系.
∵AB=2,BC=CD=1,
∴$A({\sqrt{2},0,0})$,$B({0,\sqrt{2},0})$,$S({\frac{{\sqrt{2}}}{2},0,\frac{{\sqrt{2}}}{2}})$,D(0,0,0),
由(I)可知,平面SAD的法向量$\overrightarrow m=({0,1,0})$,
设平面ADE的法向量$\overrightarrow n=({x,y,z})$,$\overrightarrow{SB}=({-\frac{{\sqrt{2}}}{2},\sqrt{2},-\frac{{\sqrt{2}}}{2}})$,
设$\overrightarrow{SE}=λ\overrightarrow{SB}$,可得E($\frac{\sqrt{2}}{2}(1-λ)$,$\sqrt{2}λ$,$\frac{\sqrt{2}}{2}(1-λ)$),$\overrightarrow{DA}=({\sqrt{2},0,0})$,$\overrightarrow{DE}=({({1-λ})\frac{{\sqrt{2}}}{2},\sqrt{2}λ,({1-λ})\frac{{\sqrt{2}}}{2}})$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DA}=\sqrt{2}x=0}\\{\overrightarrow{n}•\overrightarrow{DE}=\frac{\sqrt{2}}{2}(1-λ)x+\sqrt{2}λy+\frac{\sqrt{2}}{2}(1-λ)z=0}\end{array}\right.$,解得$\overrightarrow{n}=(0,1-λ,-2λ)$,
由二面角E-AD-S的余弦值为$\frac{\sqrt{5}}{5}$,得|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{{|{\overrightarrow m•\overrightarrow n}|}}{{|{\overrightarrow m}||{\overrightarrow n}|}}=\frac{1-λ}{{\sqrt{{{({1-λ})}^2}+{{({-2λ})}^2}}}}=\frac{1-λ}{{\sqrt{5{λ^2}-2λ+1}}}=\frac{{\sqrt{5}}}{5}$,
解得$λ=\frac{1}{2}$,即E为SB的中点.

点评 本题考查空间中直线与直线的位置关系,考查了空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.当a>0,b>0时,①(a+b)($\frac{1}{a}$+$\frac{1}{b}$)≥4;②a2+b2+2≥2a+2b;③$\sqrt{|a-b|}$≥$\sqrt{a}$-$\sqrt{b}$;④$\frac{2ab}{a+b}$≥$\sqrt{ab}$.
以上4个不等式恒成立的是①②③.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$z=a+\sqrt{3}i$(a>0)且|z|=2,则$\overline z$=(  )
A.$1-\sqrt{3}i$B.$1+\sqrt{3}i$C.$2-\sqrt{3}i$D.$3+\sqrt{3}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在长方体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,P为棱BB1上的一个动点.
(1)求三棱锥C-PAA1的体积;
(2)当A1P+PC取得最小值时,求证:PD1⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:将函数$f(x)=2sin({2x+\frac{π}{3}})$的图象向右平移$\frac{π}{4}$个单位,得到函数g(x)的图象,则函数g(x)在区间$[{-\frac{π}{3},0}]$上单调递增;命题q:定义在R上的函数y=f(x)满足f(-x)=f(3+x),则函数图象关于直线$x=\frac{3}{2}$对称,则正确的命题是(  )
A.p∧qB.p∧(?q)C.(?p)∧(?q)D.(?p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角”.

该表由若干数字组成,从第二行起,每一行的数字均等于其“肩上”两数之和,表中最后一行今有一个数,则这个数为(  )
A.2017×22016B.2017×22014C.2016×22017D.2016×22018

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足$\overrightarrow{PM}$=$\overrightarrow{MP′}$,当P在圆C上运动时,点M的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且$\overrightarrow{AC}$=$\frac{3}{4}$$\overrightarrow{AD}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x-2)lnx-ax+1.
(1)若f(x)在区间(1,+∞)上单调递增,求实数a的取值范围;
(2)若存在唯一整数x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i是虚数单位,$\overline z$是复数z的共轭复数,$\overline z+|z|•i=1+2i$,则z的虚部为(  )
A.$-\frac{3}{4}$B.$\frac{3}{4}$C.$-\frac{3}{4}i$D.$\frac{3}{4}i$

查看答案和解析>>

同步练习册答案