精英家教网 > 高中数学 > 题目详情
16.已知i是虚数单位,$\overline z$是复数z的共轭复数,$\overline z+|z|•i=1+2i$,则z的虚部为(  )
A.$-\frac{3}{4}$B.$\frac{3}{4}$C.$-\frac{3}{4}i$D.$\frac{3}{4}i$

分析 设z=x+yi,$\overline z$=x-yi,x,y∈R,由$\overline z+|z|•i=1+2i$,可得x-yi+$\sqrt{{x}^{2}+{y}^{2}}$i=1+2i,利用复数相等即可得出.

解答 解:设z=x+yi,$\overline z$=x-yi,x,y∈R,
∵$\overline z+|z|•i=1+2i$,∴x-yi+$\sqrt{{x}^{2}+{y}^{2}}$i=1+2i,
∴x=1,$\sqrt{{x}^{2}+{y}^{2}}$-y=2,
解得x=1,y=-$\frac{3}{4}$.
则z的虚部为-$\frac{3}{4}$.
故选:A.

点评 本题考查了模的计算公式、复数的运算法则、复数相等、共轭复数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知四棱锥S-ABCD中,底面是直角梯形,AB=2,BC=CD=1,BC⊥AB,侧面SAD是以∠ASD为直角的等腰三角形,且侧面SAD与底面ABCD垂直.
(I)求证:SA⊥BD;
(II)若点E为侧棱SB上的一动点,问点E在何位置时,二面角E-AD-S的余弦值为$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x、y满足$\left\{\begin{array}{l}x+y-2≥0\\ kx-y+2≥0\\ y≥0\end{array}\right.$,且z=y-x的最小值为-6,则k的值为(  )
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=-x3+x-1.
(Ⅰ)若y=-2x+b为f(x)的一条切线,求b值.
(Ⅱ)若f(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知不等式|x-2|<|x|的解集为($\frac{m}{2}$,+∞)
(1)求实数m的值
(2)若不等式a-5<|x+1|-|x-m|<a+2对x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若关于x的不等式(ax+1)(ex-aex)≥0在(0,+∞)上恒成立,则实数a的取值范围是(  )
A.(-∞,1]B.[0,1]C.$[{0,\frac{e}{2}}]$D.[0,e]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设F1、F2分别是双曲线${x^2}-\frac{y^2}{4}=1$的左、右焦点,点P在双曲线上,且|PF1|=5,则|PF2|=(  )
A.1B.3C.3或7D.1或9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,则x2+y2的最大值为(  )
A.1B.4C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.实数x,y,z满足x+y+z=5,xy+yz+zx=3,则z的最大值是$\frac{13}{3}$.

查看答案和解析>>

同步练习册答案