精英家教网 > 高中数学 > 题目详情
6.实数x,y,z满足x+y+z=5,xy+yz+zx=3,则z的最大值是$\frac{13}{3}$.

分析 得到x、y是关于t的一元二次方程t2-(5-z)t+z2-5z+3=0的两实根,根据二次函数的性质求出z的最大值即可.

解答 解:∵x+y=5-z,xy=3-z(x+y)=3-z(5-z)=z2-5z+3,
∴x、y是关于t的一元二次方程t2-(5-z)t+z2-5z+3=0的两实根.
∵△=(5-z)2-4(z2-5z+3)≥0,
即3z2-10z-13≤0,(3z-13)(z+1)≤0.
∴-1≤z≤$\frac{13}{3}$,当x=y=$\frac{1}{3}$时,z=$\frac{13}{3}$;
故z的最大值为$\frac{13}{3}$;
故答案为:$\frac{13}{3}$.

点评 本题考查了二次函数的性质,考查转化思想以及函数最值问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知i是虚数单位,$\overline z$是复数z的共轭复数,$\overline z+|z|•i=1+2i$,则z的虚部为(  )
A.$-\frac{3}{4}$B.$\frac{3}{4}$C.$-\frac{3}{4}i$D.$\frac{3}{4}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知关于x的一元二次不等式ax2+2x+b>0的解集为{x|x≠c},则$\frac{{a}^{2}+{b}^{2}+1}{a+c}$(其中a+c≠0)的取值范围为(-∞,-2$\sqrt{3}$]∪[2$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=\frac{1}{2}{x^3}-a{x^2}+1$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)方程f(x)=0有三个不同的解,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与y=$\frac{a+b}{x}$同一坐标系中的图象一定不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{3}$,点($\sqrt{2}$,-$\frac{\sqrt{2}}{2}$)在C 上.
(Ⅰ)求椭圆C的方程
(Ⅱ)设点(2x,y)在C上,点(x,y) 的轨迹为曲线E,过原点作直线l与曲线E交于A,B两点,点D (-2,0),证明:$\overrightarrow{DA}$•$\overrightarrow{DB}$为定值,并求出定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果不等式$\sqrt{x+a}$≥x的解集在数轴上构成长度为2a的区间,则a的值为$\frac{1+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b∈R,在(ax+$\frac{2b}{x}$)8的展开式中,第二项系数为正,各项系数和为256,则该展开式中的常数项的取值范围是(0,70].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.现有两个推理:
①在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;
②由“若数列{an}为等差数列,则有$\frac{{a}_{6}+{a}_{7}+…+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{15}}{15}$成立”类比“若数列{bn}为等比数列,则有$\root{5}{{b}_{6}{b}_{7}…{b}_{10}}$=$\root{15}{{b}_{1}{b}_{2}…{b}_{15}}$成立”
则关于两个推理(  )
A.都正确B.只有②正确C.只有①正确D.都不正确

查看答案和解析>>

同步练习册答案