精英家教网 > 高中数学 > 题目详情
1.已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与y=$\frac{a+b}{x}$同一坐标系中的图象一定不可能是(  )
A.B.C.D.

分析 根据两函数图象所过的象限进行逐一分析,再进行选择即可.

解答 解:A、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数y=$\frac{a+b}{x}$图象可知,a+b>0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;
B、由直线的图象知a<0,b<0,故a+b<0,所以y=$\frac{a+b}{x}$的图象在二四象限,
C、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数y=$\frac{a+b}{x}$的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;
D、由函数y=ax+b过一、三、四象限可知,a<0,b<0;由函数y=$\frac{a+b}{x}$的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;
故选:B.

点评 本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知不等式|x-2|<|x|的解集为($\frac{m}{2}$,+∞)
(1)求实数m的值
(2)若不等式a-5<|x+1|-|x-m|<a+2对x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过n(n∈N*)关者奖励2n-1件小奖品(奖品都一样).如图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.
(Ⅰ)估计小明在1次游戏中所得奖品数的期望值;
(II)估计小明在3次游戏中至少过两关的平均次数;
(Ⅲ)估计小明在3次游戏中所得奖品超过30件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题p:已知数列{an}为等比数列,且满足a3•a6=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,则logπa4+logπa5=$\frac{\sqrt{2}}{2}$;命题q:“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”.则下列四个命题:¬p∨¬q、p∧q、¬p∧q、p∧¬q中,正确命题的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知扇形的半径为2,圆心角为2弧度,则该扇形的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.实数x,y,z满足x+y+z=5,xy+yz+zx=3,则z的最大值是$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1、F2,过F2的直线与椭圆交于A、B两点,若△F1AB是等边三角形,则离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若两点的坐标是A(3cosα,3sinα,1),B(2cosβ,2sinβ,1),则|AB|的取值范围是(  )
A.[0,5]B.[1,5]C.(0,5)D.[1,25]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设实数a=log23,b=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,c=$\frac{1}{{∫}_{0}^{π}xdx}$,则(  )
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

同步练习册答案