| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 利用微积分基本定理与等比数列的性质即可判断出命题p的真假;利用复合命题真假的判定方法即可判断出命题q的真假.再利用复合命题真假的判定方法即可判断出真假.
解答 解:命题p:已知数列{an}为等比数列,且满足a3•a6=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx=$\frac{1}{4}$×π×22=π,则logπa4+logπa5=logπ(a4a5)=logπ(a3a6)=logππ=1≠$\frac{\sqrt{2}}{2}$,因此是假命题;
命题q:“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”,是真命题.
则下列四个命题:¬p∨¬q、p∧q、¬p∧q、p∧¬q中,只有¬p∨¬q、¬p∧q是真命题.
正确命题的个数是2.
故选:C.
点评 本题考查了微积分基本定理、等比数列的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{3\sqrt{2}}{2}$,$\frac{3\sqrt{2}}{2}$) | B. | (-$\frac{3\sqrt{2}}{2}$,-$\frac{3}{2}$] | C. | (-$\sqrt{2}$,$\sqrt{2}$) | D. | (-$\sqrt{2}$,-1] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com