精英家教网 > 高中数学 > 题目详情
8.如果不等式$\sqrt{x+a}$≥x的解集在数轴上构成长度为2a的区间,则a的值为$\frac{1+\sqrt{2}}{2}$.

分析 由题意得x2-x-a≤0,设方程x2-x-a=0的两个根为:x1,x2,结合|x1-x2|=2a,得到4a2-4a-1=0,解出a的值即可.

解答 解:由不等式$\sqrt{x+a}$≥x,可得:x2-x-a≤0,
设方程x2-x-a=0的两个根为:x1,x2,∴x1+x2=1,x1•x2=-a.
∵|x1-x2|=2a>0,∴(x1+x22-4x1 x2=4a2
∴4a2-4a-1=0,解得:a=$\frac{1+\sqrt{2}}{2}$,或a=$\frac{1-\sqrt{2}}{2}$(舍去),
故答案为:$\frac{1+\sqrt{2}}{2}$.

点评 本题主要考查了解不等式问题,考查了一元二次方程的根与系数的关系,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设F1、F2分别是双曲线${x^2}-\frac{y^2}{4}=1$的左、右焦点,点P在双曲线上,且|PF1|=5,则|PF2|=(  )
A.1B.3C.3或7D.1或9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题p:已知数列{an}为等比数列,且满足a3•a6=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,则logπa4+logπa5=$\frac{\sqrt{2}}{2}$;命题q:“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”.则下列四个命题:¬p∨¬q、p∧q、¬p∧q、p∧¬q中,正确命题的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.实数x,y,z满足x+y+z=5,xy+yz+zx=3,则z的最大值是$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1、F2,过F2的直线与椭圆交于A、B两点,若△F1AB是等边三角形,则离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设z=1-i(i是虚数单位),则$\frac{1}{z}$+$\overline{z}$=(  )
A.$\frac{1}{2}-2i$B.$\frac{3}{2}$+$\frac{3}{2}$iC.-$\frac{1}{2}$+2iD.$\frac{3}{2}$-$\frac{3}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若两点的坐标是A(3cosα,3sinα,1),B(2cosβ,2sinβ,1),则|AB|的取值范围是(  )
A.[0,5]B.[1,5]C.(0,5)D.[1,25]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ex,g(x)=lnx-2.
(Ⅰ)证明:$g(x)≥-\frac{e}{x}$;
(Ⅱ)若对所有的x≥0,都有$f(x)-\frac{1}{f(x)}≥ax$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某出版商准备出版一种教辅读物,需要先进行调研,计划对山东、广东、江苏三地市场进行市场调研,待调研结束后决定印刷的数量,试画出流程图.

查看答案和解析>>

同步练习册答案